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Abstract

In Sweden, forest research has been emphasised on mainly two species
of wood, i.e. pine and spruce. However, we have also a number of hard-
woods which could be utilised for furniture manufacturing, cabinets etc.
Nowadays, these hardwoods are a slumbering resource in our country.
Most of our broad leafed species are found as small stands inside our
soft wood forests and hence not utilised in the most profitable way. For
example, much of our birch wood is ground to paper fibres even if it
would be perfect for high valued veneer. Instead, most of our birch veneer
is imported from Finland. In order to increase the interest for Swedish
hardwoods we therefore have started research in this field and have now
designed a chair made of ash wood, Fraxinus excelsior. Most chairs are
made up of structural elements called indetermined frames which makes
it a rather tedious task to analyse the internal forces in the frame. How-
ever, by using the Finite Element Method, FEM, it has been possible to
reduce this drawback. This paper shows how a chair could be analysed,
and designed, by use of methods common in other disciplines than furni-
ture manufacturing. We also present results, in the form of stress-strain
diagrams, from tests made on Swedish ash.

INTRODUCTION

Furniture design is almost always based on experience from traditions in handi-
craft manufacturing. As far as we know, no carpentry in Sweden or elsewhere,
use static analyses for finding the internal forces inside the wooden members of
a e. g. a chair. However, some academic research groups have shown interest
in this topic and the first to mention must be the work of C. A. Eckelman
starting already in 1966, see Reference [1]. In the paper he shows that a chair
could be analysed as a structure for taking up loads. By use of strain gauges he
also presented some values for the maximum moments at different parts of the
chair. Eckelman also continued his efforts and we have found seven additional
papers published the latest three years 1992-1995. He has also been the author
of some text books and among them, Reference [2], seems to be the one most
comprehensive. In this book he analyses, not only chairs, but also book shelves,
sofas etc. as structural devices.

In Poland the research seems to have been concentrated around the Poznan
University. Several papers have been published and some of them also dealt
with Finite Element Methods, FEM, and chairs. The most interesting paper for
us, however, seems to only have been published in Polish, Reference [3].



Another research team in USA has also published papers in this field, see
Reference [4]. They have examined analytical and experimental results for
chairs, sofas and book shelves. Further, they have studied the joints between
different chair members in detail.

A number of other researchers have dealt with different types of furniture,
e.g. cabinets, and here only three of them are mentioned, References [5], [6] and
[7]. We have also contributed ourselves to this scientific field with, up to now,
three papers, viz. References [8], [9] and [10].

MATERIALS TESTING

When structures are to be analysed by use of solid mechanics there is a need
for knowledge about the properties of the wood used in that structure. In the
literature it is easy to find values for e.g. the Young’s modulus, the strength in
tension and compression and so forth. We have used a table found in Reference
[11], page 163, where such values for European ash are presented. A closer look,
however, reveals that the modulus of elasticity is calculated from tests in bending
and not from tensile or compression tests. This is understandable because the
properties for wood differs so much between tension and compression. We,
therefore, need more experience of how, for instance, ash wood behaves when
it is exposed to loads in different directions. Below, some tests are shown from
our own laboratory in order to improve the situation. In Figure 1 a tensile test
for an ash rod specimen is presented.
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Figure 1: Tensile test for European ash, Frazinus excelsior

The rods we used have been manufactured in accordance with details found
in Reference [12] page 324. The tensile test in Figure 1 shows two different
modulii of elasticity. The highest modulus, see the slope of the curve, is found
for a stress below approximately 35 MPa, equalling about 7,300 MPa, while the
lower one is found above this point, i.e. 3,900 MPa. Interesting is also to note
the behaviour of the rupture. The stress increased in a linear way up to the
point where a total rupture occurred. Usually, there is a significant part of the
stress - strain line which is not linear. Instead the Young’s modulus gets lower
and lower and finally the slope is negative. Interesting to note is also the fact



that our specimens did not show the high strength that is reported in literature.
In Reference [12] page 295, Young’s modulus for ash is 16,100 MPa, which is
substantially higher than we have found. From Figure 1 it is also obvious that
the tensile strength for ash found in Reference [11], i.e. 161 MPa, is significantly
higher than the one we experienced, 129 MPa. To a small part this could be
explained by the relatively high moisture content in our specimens which was

8.5 %.

We also elaborated some compression tests and one of them is shown in

Figure 2.
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Figure 2: Compression test for European ash, Frazinus excelsior

The maximum stress was 66.4 MPa which is somewhat higher than found
in Reference [11], 51 MPa. Young s modulus for compression was calculated to
approximately 5,600 MPa, i.e. a bit lower than the one found for tension.

Further, we made some bending tests and one of those is presented in Figure

3.
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stress, the Modulus of Rupture or MOR, for our specimen



was found to be 122.8 MPa which is almost the same as the one found in
literature, Reference [11], which is 118 MPa. The Modulus of Elasticity, MOE,
was calculated to approximately 9,970 MPa which is somewhat lower than the
value found in Reference [11], 13,100 MPa. The highest values from our bending
tests was 139.6 and 10,609 MPa for the MOR and MOE respectively.

The tests above show that information in literature not always could be
used without consideration. The largest discrepancies were found for the tensile
tests where our tests showed a significantly lower strength than presented in e.g.
Reference [11]. The behaviour in rupture differs also a lot from "classic” theory
and for example ash wood seems to reach the point of rupture in a fairly linear
slope and then break immediately. This is different from our birch tests found
in Reference [9].

CASE STUDY

Common chairs include a stretcher between the front and back rails. This is
very wise because this structural member will reduce the moment in the back
rail immediately under the seat, in a significant way. Usually, this stretcher is
absolutely horizontal, but we have shown that this is not an optimal location.
Instead, the stretcher should be lower at the back rail and higher at the front
chair leg. In Reference [8] we presented the solution shown in Figure 4.
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Figure 4: Chair with diagonal stretcher, [8]

We have also shown that the moments in the stretcher are very small but
that it was subject to axial forces that could not be neglected. The stretcher
we designed deflected in the direction perpendicular to the frame plane, due
to stability problems, see Reference [10], and therefore we concluded that it
should have a cross section in the form of, almost, a square or a circle, and
not a pronounced rectangle. The moment in the right part of the seat was



about half the value of that in the back rail above the seat. The seat rail could
therefore be thinner than it originally was, which also should make the joint
easier to construct. In Reference [9] the seat and the back rails had identical
cross sections. The dowel joint used in the construction made it necessary to
make a relatively large hole in the back rail which therefore lost most of its
strength and, subsequently, the chair could not endure the expected loads.

Consider for a start the seat rail. It must endure the load of a sitting
person and it could be assumed that the load is evenly distributed along the
rail. Assume also that the person sitting on the chair weights about 90 kg. In
our case the rail is 0.4 m in length, L, and thus the load, ¢, will become:

90 x 9.81

iy = L1104 N/m

Note that we have two seat rails, one on each side of the chair. The moment
in the middle of the rail is calculated as:

g x L?
8

=22 Nm.

Assume, further, a rail with a cross section of 0.01 times 0.02 m and use the
expression:

M x z b x h?
h I =
where 15

g =

and we end up with a stress, o, equalling 33 MPa. This is substantially
lower than the allowed stress for ash which due to Reference [11], page 164, is
about 118 MPa which is the MOR in bending. Our own tests showed the same
magnitude. We know from previous work, see Reference [9] that the moment in
the right end of the rail is about 60 Nm so this later moment will be decisive
for the seat rail. In indeterminate frames we must use the deformations of the
structure, in order to calculate the internal forces. In a determined frame we
only need static equations. In our case, see Figure 4, the frame is indeterminate
because the members are firmly connected to each other. When indeterminate
frames are analysed we also must make assumptions of the cross sections for each
member before it is possible to solve the problem. For a start, assume therefore
a back rail with a cross section of 0.015 x 0.03 m. We have used 0.01 x 0.03 m
in Reference [9] but showed that it was difficult to solve the dowel joints. The
seat rail is, with the above discussion in mind, assumed to have a cross section of
0.005 x 0.02 m and the stretcher 0.01 x 0.01 m. In Reference [9], 0.005 x 0.02
m was chosen with resulting stability problems so now a more quadratic cross
section is used.

In Figure 5, a simplified frame is presented, where all determinate parts have
been excluded.

We will solve this problem with the method of deformations, or displace-
ments, which is one of the finite element methods available, see Reference [13]
page 261 and the following, for all details. The first thing to do is, however, to
split the problem into two, i. e. one particular and one complementary problem.
This is so because of the load, g, between the joints. From so called elementary
cases, Reference [13] page 372, we find that this load could be replaced by two

q><L2
12

moments, one in each end of the seat rail. The moments are acting clock
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Figure 5: Simplified structural problem of a chair

wise in the right corner, and in the opposite direction in the left corner. We
assume that the wooden material in the chair is identical in elastic properties
and therefore we, for now, set the Young’s modulus to E. The moment of inertia
for the rails do not have the same values and, hence, it is convenient to calculate
the relationship between them, see Table 1.

Member of the chair Moment of inertia [m?] Relation

The back rail 3.38 - 10-8 40.6
The seat rail 3.33 - 10-9 4.0
The stretcher 8.33 - 10-10 1.0

Table 1: Moment of inertia for the wooden members of the chair and their
relationship

Now it is time to elaborate the stiffness matrix for the frame. The details of
how to achieve this is shown in [10] and therefore it is not repeated here. Only
the resulting matrix is shown below:

18.8 8 1.41 EI Q1 14.7
8§ 176 80 X A x| g | = 1053
141 80 162.8 q3 0

The right hand side of the matrix equation shows the moments in the com-
plementary structure. The value 14.7 is the moment in the upper left corner,
while 105.3 is the moment emanated from P in Figure 4, which equals 300 N
and the length, L, which is 0.4 m. The resulting moment, M in Figure 5, is
therefore 120 Nm, which in turn is subtracted by 14.72, emanating, likewise,
from the complementary structure. Solving this small equation system results
in the unknown rotations, g, where ¢; = 0.1975, g2 = 0.2975 and g3 = -0.1479.



The left and right seat rail corners rotates clockwise, while the bottom back rail
corner rotates in the opposite direction.

We must now calculate the resulting moments in the beam members of the
chair. The method for doing so is shown in Reference [8] and therefore only
the result is shown here. Mis shows the moment in the left upper end of the
seat rail, point 1, and in the direction to point 2, see Figure 5, while My
represents the moment in the right end of the seat rail and so forth. In Table 2
the complementary solution is added to the particular one, which gives us the
final result.

Moment  Complementary  Particular Total

Mo 13.85 (T.L.) 14.72 (T.0.) 0.87 (T.0.)
Moy 15.85 (T.0O.) 14.72 (T.0.) 30.57 (T.0.)
Mos 89.42 (T.I) 0 89.42 (T.I)
Mso 0.34 (T.0.) 0 0.34 (T.0.)
M3 0.87 (T.0.) 0 0.87 (T.0.)
M3 0.35 (T.0.) 0 0.35 (T.0.)

Table 2: Resulting moments in Nm from the calculations

We must also keep track of the direction for the moments and in Table 2,
"T.I.” means tension at the inside of the frame while "T.0.” means tension at
the outside.

In Figure 6 these moments have been described in a principal sketch.
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Figure 6: Principal moment graph of chair frame



The scale in Figure 6 is approximate in order to clarify the situation. The
maximum moment in the seat rail is about 30 Nm. Using the same procedure
as above for calculating the stress in the beam we find that it is about 92 MPa,
i.e. somewhat lower than the 118 MPa found in Reference [11]. The maximum
moment in the back rail is 120 Nm which implies a stress of 53 MPa which is
less than half the allowable load. The joint between the seat and back rails,
however, probably makes it necessary to apply the cross section used for the
back rail. We also find that the stretcher is exposed to a very small moment.

The axial forces, i.e. compression, in this chair member is calculated to 742
N. By use of the Euler IV case, the critical load for instability equals:

Axm?xExI
1.2

and therefore it seems as if no risk for collapse is present. The value for I
is found in Table 1, while L is 0.4 x 2°° m. We have also used the Modulus
of Elasticity, MOE, for F in the expression above, which equals 13,130 MPa, a
value found in [11] page 164. If we use our own compression modulus, i.e. 5,600
MPa the critical load will be lower than the one present in the stretcher and
there might therefore be a risk of collapse here.

We also have to pay closer attention to the joints. The seat rail had a cross
section of 0.005 times 0.02 m while the back rail had a cross section of 0.015
times 0.03 m. In order to join the two members to each other we must make
a hole in the back rail. Suppose that this hole penetrates the back rail in its
entirety. We will then have about 0.005 m of wood on each side of the hole in
the seat rail. The moment of inertia for this part of the back rail will become
2.25 x 1078 m* and subsequently the stress 80 MPa when 120 Nm is applied.
In order to manufacture this joint we must use a so called long hole bore. The
edges of the seat rail must therefore be rounded as half a circle in the top and
bottom of the rail, see Figure 7.

The same is valid for the stretcher but it will then achieve a circular cross
section. With the axial force in mind we think that only half the back rail should
be penetrated. This will ascertain that the stretcher could not be punched
through the back rail even if the adhesive fails, see Figure 8.

The joint where the stretcher meets the seat rail is only exposed to a very
small moment, see Figure 6. The seat rail, however, is thinner than the stretcher
and thus the method with a bored hole is not applicable. We suggest that a
small notch is sawed out from the seat rail where half the stretcher will fit in.
Part of the stretcher is after this glued to the side of the seat rail, Figure 9.

The connection between the seat and back rails have also been studied by use
of another FEM method, the one with plain stress elements. The structure was
then divided into thirteen elements with 26 nodes, each located in the corners
of the elements, see Figure 10 where part of the structure is shown.

The result from the FEM analysis showed that the maximum compression
stress in the horizontal direction, i.e. - 38.0 MPa, occurred just above node 2.
Maximum tension with almost the same absolute value was found just under
node 3 and around node 6, see also Figure 11 where A equals - 30.0, B -20.0
and G +30.0 MPa respectively.

The values from the plain stress method are somewhat lower than those
calculated from the beam method. Both calculations show, however, that the
stress is lower than the one allowed in literature, and also lower than the one

Peritical = =1, 349 N
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Figure 7: Part of the back rail with hole for the seat rail

found in our own testing equipment, see Figure 1. The value for ”stress of
rupture” for compression will be the dimensioning criterion with a value of
about 51 MPa, see Reference [11] page 164.

In the vertical direction, maximum compression emerged just to the left of
nodes 14, 12 and 11 with a value of 45.5 MPa while the maximum tension value
was found immediately to the right of node 13, and around node 6, see Figure
12, where A equals -40.0 MPa, and T is +40.0 MPa.

CONCLUSIONS

We have shown that furniture, such as chairs, can be analysed by use of modern
computer programs. In our case two types of Finite Element Methods have
been used. The overall structure is preferably analysed by use of so called beam
elements while details such as joints can be studied more in detail by plain
stress elements. The joint is in the second case divided into small, but finite,
rectangular parts while the rest of the structure is divided in larger pieces. The
effort is because of this emphasised on points where the stress and strain is of
vital interest. Using these methods, show that ordinary chairs are far too strong
and material is wasted from the view of solid mechanics. Important is also the
fact that much more knowledge is needed about the material wood. Our tests
of ash wood in tension, compression and bending shows that values taken from
literature are not always relevant.
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Figure 8: Back rail with hole for the stretcher
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Figure 10: Part of the finite element mesh for the seat and back rail joint
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Figure 11: Stress in the horizontal direction according to FEM calculations
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Figure 12: Stress in the vertical direction according to FEM calculations
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