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Abstract

The optimal heating-system-retrofit strategy for existing buildings dif-
fers due to varying prices of energy, building and installation features,
climate conditions, etc. We have examined a test building situated in
Linkoping, Sweden. By using the OPERA model, we were able to arrive
at the optimal retrofit strategy, which includes a ground-coupled heat
pump using electricity to run the compressor. Unfortunately, the price of
electricity differs according to the time of day, month, etc. These varia-
tions are not included in the OPERA model. In OPERA, the price should
be divided into 12 segments, one for each month of the year since climate
data are divided in this manner. Fine tuning of a dual-fuel system (an
oil-fired boiler handles the peak load and a heat pump the base thermal
load) is optimized using the Mixed Integer Linear Programming (MILP)
method. Adding a hot-water accumulator also makes it possible to use low
electricity prices for space and domestic hot-water heating. This system
competes in the model with traditional heating devices such as district
heating. The optimal method of heating the building was found for using
the heat pump alone.

INTRODUCTION AND CASE DESCRIPTION

The OPERA model is used for finding the optimal retrofit strategy for an exist-
ing building. The model has been described in several international publications,
of which Ref. [1] is the latest. The model is therefore not dealt with in detail
here. However, the output from the model is shown for our test building, which



is a multi-family block with 14 apartments. Table 1 shows the energy use in
detail.

MONTH DEG. ENERGY HOT FREE SOLAR UTILIZ. FROM INSUL.
NO HOURS TRANSM WATER ENERGY HEAT FREE BOILER OPTIM.

1 17782 36.5 3.5 4.2 1.2 5.4 34.7 36.6
2 16272 33.4 3.5 4.2 2.6 6.8 30.2 33.5
3 15698 32.2 3.5 4.2 6.1 10.2 25.5 32.3
4 11304 23.2 3.5 4.2 9.0 13.1 13.6 23.2
5 7440 15.3 3.5 4.2 12.7 15.3 3.5 0
6 4032 8.3 3.5 4.2 13.2 8.3 3.5 0
7 2455 5.0 3.5 4.2 12.9 5.0 3.5 0
8 3422 7.0 3.5 4.2 10.9 7.0 3.5 0
9 6336 13.0 3.5 4.2 7.7 11.9 4.7 13.0
10 10342 21.3 3.5 4.2 4.1 8.3 16.5 21.2
11 13176 27.1 3.5 4.2 1.6 5.7 24.9 27.1
12 15624 32.1 3.5 4.2 0.8 4.9 30.7 32.1
TOTAL 123883 254.7 42.0 50.0 82.8 102.1 194.7 219.1

Table 1: Energy demand in MWh for the test building during the months of a
year.

The reason for obtaining constant hot water and free energy is the result of
OPERA using only one input value for the full year. This value is then divided
into 12 segments, one for each month.

The OPERA model next calculates the optimal method of heating this build-
ing. New windows with lower U-values, additional insulation and other retrofits
are also taken into account. The optimal solution is found when the lowest pos-
sible life-cycle cost (LCC) is achieved. The solution shows that district-heating
is the preferred heating system and should be combined with triple-glazed win-
dows and weather stripping. The LCC will thereby be reduced from 2.31 to 1.36
MSEK. The next best solution is to use a dual-fuel system with a heat pump
and an oil-fired boiler and to combine this installation with both attic floor and
external wall insulation, as well as new windows and weather stripping. Most of
the city of Linkdping is heated by a district-heating system based on combined
heat and power generation (CHP). Therefore, heat is sold to the end user for only
0.26 SEK/kWh, including taxes (one ECU equals approximately 8 SEK). The
electricity rate is, however, divided into three segments. The high-cost segment
of 0.94 SEK/kWh is applicable from 06.00 to 22.00 on working days between
November and March. For the rest of the day, the rate is 0.49 SEK /kWh. From
April to October, the rate is 0.38 SEK/kWh throughout the day. By using
a heat pump operating only during night time, heat can be supplied for less
than 0.17 SEK/kWh, i.e. if the coefficient of performance of the heat pump is
equal to 3.0, which might be applicable if a ground-water-coupled heat pump
is used. The question is now whether such a dual-fuel system is competitive if
the high required cost for heating equipment is considered. MILP has found
many applications in recent years since it enables very large and complex prob-
lems to be solved and also optimized. The development of faster and cheaper
personal computers has contributed to this trend. District-heating systems and
insulation measures are dealt with in Ref. [2]. Industrial energy systems are
examined in Refs. [3], [4] and [5]. One drawback with introducing integers in
linear programming is that the computing time will be significantly longer and



that no ranging is possible. However, if steps in cost functions are to be part of
the model, integers are necessary.

THE MILP MODEL

The year has been divided into segments according to the electricity rate, see
Table 2.

Month High-price hours Medium-price hours Low-price hours Total number
January 368 376 - 744
February 336 360 - 696
March 336 408 - 744
April - - 720 720
May - - 744 744
June - - 720 720
July - - 744 744
August - - 744 744
September - - 720 720
October - - 744 744
November 336 384 - 720
December 352 392 - 744
Total 1,728 1,920 5,136 8,784

Table 2: Number of hours in different time segments for 1996

With 368 high-cost hours out of a total of 744, 18.1 MWh are needed for
space heating during high-cost conditions (Tables 1 and 2). However, heat from
appliances, solar gains, et c. is likely to be available only during daytime. Some
of this free energy is available from 06.00 to 22.00 from Monday to Friday (which
is the high-cost segment). In January, there are 23 working days and, hence,
23/31 of (4.2 + 1.2) MWh are considered to contribute to space heating during
high-price hours. Therefore, 14.1 MWh remains for this purpose. Hot-water
consumption is also likely to occur during daytime and hence 2.6 MWh must
be added, resulting in 16.7 MWh which must be supplied from the heating
equipment during high-price hours. Some of this heat could be provided by
using a hot-water accumulator coupled to a heat pump. If the accumulator is
too small, extra heat must be added by the oil-fired boiler or by the heat pump
working on high-price electricity. The price of oil is about 0.39 SEK/kWh in
Sweden (1996), so that the cost of oil energy is higher than heat-pump energy
even if the pump is used all of the time. A large heat pump is, however, very
expensive and such a solution could therefore not be preferable.

All MILP optimization problems have an objective function. In our case,
this function shows the cost for supplying the building with heat and this cost
must therefore be minimized. The installation cost, in SEK, for heat pumps
has been found to be approximately 60,000 + 5,000 x P, where Py, shows the
thermal power in kW for the pump, see Ref. [6] (1 US$ equals 7 SEK). This
equipment must compete with the district-heating system (which costs 40,000
+ 60 x Py,) or the oil-fired boiler (with a cost of 55,000 + 60 xP,;). The cost
functions therefore start with a major increment. It is important to calculate
the present values of all equipment. The heat pump is assumed to have a useful
life of 15 years. We calculate the present value for a 50-year life and assume an



interest rate of 5%. The present value for the first part of the cost (i. e. 60,000)
is

60 x [1+ (1+0.05)""° + (1 +0.05)"%° + (1 +0.05)"%] =109 kSEK (1)

At year 50, the heat pump has a salvage value corresponding to 10 years of
remaining life. Therefore, 3 kKSEK must be subtracted, resulting in a present
value of 106 kSEK. The life spans are 25 and 15 years for the district-heating and
oil-fired boiler systems, respectively. The first part of the function occurs in the
objective function only if one of the systems is chosen. Hence, the three binary
variables A;, As and Ajz are introduced, which makes it possible to determine
the first part of the objective function as

Ay x 52 x 103 4+ 78 x Py, +

+As x 106 x 10 + 8.9 x 10° x Py, + Az x 97 x 10° + 106 x Py

The variables A;, As and A3 assume only the two values 0 or 1. If Py,
is larger than 0, A; must be 1; if Py, equals 0, A; must also be zero. The
same procedure is valid for the district-heating variable As etc. This behavior
is fulfilled by setting

Al x M > Pdh- (2)

Here, M is a parameter which must be chosen large enough not to constrain
the value of Py,. M is therefore set equal to a value larger than P;, might ever
take, e.g., 200 kW; see Ref. [7], p. 179, for further details regarding this fixed
charge problem. We next consider the high-price hours of January. Above, we
concluded that 16.7 MWh were needed (see the discussion about free gains and
high-price hours). If a district-heating system is used, the price will be 0.26
SEK/kWh, no matter what time of day or season the energy is used. For the
high-price hours of January, the following constraint was imposed:

(Pihan + Pinhp + Pihace + Pinob) % 368 > 17 x 10° (3)

The subscript 1h shows that this is month 1 and a high-price tariff applies,
while acc indicates that heat comes from a hot-water accumulator. The accu-
mulator will be dealt with in more detail later. An index ob indicates that an
oil-fired boiler is used. One such constraint must be provided for each of the
specified time segments (Table 2). The cost of heat production must also be
included in the objective function. The energy cost is incurred every year and
thus a present-value factor must be introduced. For a 50-year project life and
an interest rate of 5%, this factor will be 18.26. The objective function must
therefore be augmented by

Pipan x 0.26 Plhhp x 0.94 Pinoy x 0.39

( 0.95 3.0 0.7

to include energy prices and efficiencies or COP. The district-heating price
is 0.26 SEK/kWh and the efficiency is equal to 0.95. The other values refer to
the heat pump and the oil boiler. Installation costs for the accumulator and
the oil-fired boiler, as well as more binary variables, must also be included in

) X 368 x 18.26



the objective function. Pgn, Ppp et c., i. e. quantities without time-segment
signs, show the minimum sizes of the heating-system components which provide
sufficient energy. In order to find these values, further constraints are needed.
For the district-heating system, these will be

Prihan
—— — P, <0 4
0.95 dh = )

Py, is therefore slightly larger than the largest of Pipan, Pandn, et ¢. Con-
straints must be imposed for all time segments, as well as for the use of other
types of heating equipment. The heat-storage system is assumed to store en-
ergy in the form of hot water. This heat energy is assumed to be produced by
the heat pump during medium electricity-price conditions (see Table 2). Some
or all of this heat is discharged when the electricity price is high. The latter
case is covered by Eq. (3). During the medium-cost period, the accumulator is
charged. There are only 8 hours available for charging the accumulator during
any 24-hour working day. In January 1996, there were 23 working days and
thus 184 hours for charging. Hence, Piyqce X 184 kWh should be added to the
right-hand side of our constraints. There is also a possibility that it is possible
to charge the accumulator faster than to discharge it. Table 2 shows that 378
medium price hours occur in January and the complement to Eq. (3) must be
changed accordingly. The value on the right-hand side must also be changed
because solar and free energy are likely to become available only during day-
time. There is an energy need of 18.5 MWh for this time segment. Adding
domestic hot-water usage and subtracting free energy from appliances and solar
radiation during Saturdays and Sundays decreases this amount to 18.0 MWh.
The medium cost constraint will therefore be

(Prman + Prmhp + Pimob) X 378 — Prace X 184 > 18.0 x 10? (5)

The cost for a hot-water accumulator depends on the size measured in kWh.
In Ref. [8], this cost has been estimated at 1,500 SEK/kWh and the reader
is directed to this reference for further information. The maximum thermal
demand occurs on the coldest winter day and implies a peak of 71.96 kW. The
model must therefore include the expression

Pyn < 0.95 + Php X 3.0+ Pyee + Pop x 0.7 <71.96 kW (6)

The largest value of the variable P, is found by using an equation similar to
Eq. (4). The specified price for district heating does not include a subscription
fee. Depending on the tariff, this fee should be based on heat consumption
during one year divided by a category value, which in our case is 2,200 hours.
The subscribed thermal power value is then used for the annually recurring cost
(4,000 + 260 xPy,s) which, in turn, must be multiplied by the present-value
factor 18.26. The model must include expressions which add this cost to the
objective function, viz.,

Panin X 368 + Pypim X 376 + Papon X 336 + Papom X 360 — Egp < 0.0 (7)

Pth X 2, 200 — Edh > 0.0 (8)



The cost (A7 x4,000+260 % Pyns)x 18.26 is added to the objective function.
The electricity rate subscription fee includes an annually recurring cost of 1,100
SEK, which must also be added to this function. The binary variable A, is used
for this purpose. The program leads to a problem with 73 variables and 186
constraints. Four of the variables are binary, i.e. they can only take the value 0
or 1.

OPTIMIZATION OF THE BASIC CASE

We have used the ZOOM optimization software, see Ref. [9] to solve the prob-
lem. The MILP model is optimized in just a few seconds and the result shows
that it is optimal to use only the heat pump (see Fig. 1).
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Figure 1: The heat pump is used during all time segments. Optimal solution
for the basic case

The oil-fired boiler, district-heating-system or accumulator are never a part
of the optimal solution. The minimum value of the objective function is 1.07
MSEK. To clarify the situation, the solution is described in more detail in
Table 3.

The heat pump is used throughout the year. For January, during the high-
cost electricity segment, the cost is 16.7 x 103 x &3 = 5.2 kSEK; the price
for heat is 0.94 SEK per kWh while the COP is 3.0. The resulting annually
recurring cost for energy is 40.1 kSEK. We also need the equipment for heat
production. The heat-pump system must cover the maximum thermal power in
the building, i.e. 72 kW. The optimization results in P, equaling 23.98 kW.
Pp,p must be multiplied by 3.0 in order to achieve the needed thermal power,
which therefore is 71.94 kW. Table 4 shows the total cost for the building when
present values are used. The total sum in Table 4 differs by only a few SEK
from the cost calculated by ZOOM.



Month  Hours Power Heat-pump Heat-pump Total
energy [kWh]| cost [SEK]| cost [SEK]

January 368 45.37 16,696 5,231 5,231

376  47.86 17,995 2,939 2,939

February 336 42.28 14,206 4,451 4,451

360 46.83 16,858 2,754 2,754

March 336 29.78 10.006 3,135 3,135

408  38.05 15,524 2,536 2,536

April 720 18.86 13,579 1,720 1,720
May 744 470 3,496 443 443
June 720  4.86 3,499 443 443
July 744 470 3,496 443 443
August 744 470 3,496 443 443
September 720  6.46 4,651 589 589

October 744  22.16 16,487 2,088 2,088

November 336 32.98 11,081 3,472 3,472

384 35.88 13,778 2,250 2,250

December 352  40.26 14,171 4,440 4,440

392 42.10 16,503 2,696 2,696

Total 8,784 - 195,522 40,073 40,073

Table 3: Energy cost during one year for an optimal system

Energy cost, 40,073 SEK /year 731,732 SEK
Electricity subscription fee, 1,100 SEK /year, 20,086 SEK
Heat-pump system, electric power, 23.98 kW 317,627 SEK
Total 1,069,445 SEK

Table 4: Present-value cost elements for the studied building

ANALYSIS

If the oil-fired boiler had been used only to cover the peak load of the building,
a 24.1 kW unit would have been needed (Table 3). This would cost 99.5 kSEK.
At the same time, the cost for the heat pump would have decreased by 71
kSEK. However, this would not be sufficient to change the optimal solution. It
is obvious that the increment in the cost function is essential for the optimal
solution. We assume that the step for the oil-fired boiler cost is reduced to
half its original value, i. e. 27.5 instead of 55.0 kSEK. A new optimization
with ZOOM results in an oil-fired boiler, with a thermal size of 33.6 kW and
a heat pump with an electric power of 15.6 kW. The boiler is then used only
for covering the peak-load and during medium electricity price conditions in
February. The LCC is now 1.04 MSEK, which is a small reduction compared
to the original case. A further reduction of the same variable does not change
the optimal solution. Another plausible solution is to use the heat accumulator.
The cost for the accumulator is set equal to the low value 1 SEK/kWh instead
of 1,500 SEK /kWh. The LCC calculated by ZOOM now decreases to 0.9 MSEK
and an accumulator with a size of 531.2 kWh is optimal. At the same time, the
size of the heat pump is reduced slightly compared to the original value because



the peak is partly covered by the accumulator. Figure 2 shows the solution in
more detail.
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Figure 2: Use of the no-cost accumulator

The rectangles which show the energy amount from the accumulator have
the same area as the rectangles showing energy from the heat pump to the accu-
mulator. However, if the number of hours available for storage is considered, the
latter rectangles should be narrower and taller. We consider January. ZOOM
calculates the thermal load of the accumulator heat for the high electricity cost
segment as 31 kW. Adding this value to the heat pump thermal load of 14.3 kW
results in 45.3 kW, which is the requirement found in Table 3. The accumulator
has thus stored 31.1 x 368 = 11.4 MWh. This heat must be produced by the
heating system, but now there are only 8 hours each working-day night available
for this purpose, resulting in 184 hours. This value is applied for the accumula-
tor, which ZOOM sets equal to 62.1 kW charging power or 62.1 x 184 = 11.4
MWoh; but it is not used for the heat pump or other heating-system equipment.
If this is taken into account, the accumulator must be smaller. At the same
time, the total cost increases and the no-cost accumulator will perhaps again
be eliminated from the optimal solution. We noted that the subscription fee,
among other factors, makes this system unprofitable for district-heating. When
the value 260 in the district-heating tariff is reduced to 1.0, ZOOM calculates
the total cost as 1.07 MSEK, which is also a small decrease below the original
value. The district-heating system is next used during the high-electricity-cost
segments and further combined with the heat pump during medium-cost peri-
ods. Details are shown in Fig. 3 and Table 5. The district-heating system must
have a size of 47.8 kW in order to meet the demand, while the heat pump must
have a size of 12.7 kW,;.

The three cases show almost identical total costs. This result follows because
ZOOM always optimizes the system. If district heating is used, the optimal total
cost may be almost the same as for an optimal heat-pump system as long as
the strategy is optimal. Choosing too large or too small a heat pump may
significantly increase the total cost. In our basic case, a heat-pump system was
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Figure 3: Optimal solution with a low subscription fee for district heating

optimal. If the electricity price in the high-cost segment goes up, the system
loses part of this heat source which happens for a segment cost of about 1.1
SEK/kWh and resulting in a total cost of 1.13 MSEK. If the price of district
heating is now increased to 0.30 SEK /kWh, the heat-pump system is once again
optimal. If both prices are increased, then the oil-fired boiler must be used. It
is important to note the influence of the binary integers. ZOOM always solves
the linear program first, by assuming that A;, Ay etc. are ordinary variables.
The optimal solution to this problem is to use both the heat pump (15.1 kW)
and the district-heating system (31.3 kW). The total cost becomes 0.9 MSEK.
Using integers eliminates the district-heating system and leads to a heat pump
with a power rating of 23.98 kW. The total cost is thereby increased because
the increment in the cost functions are now properly handled. Integers must be
included to find the right solution.

CONCLUSIONS

We have shown how to create an MILP model of a building with three different
heating systems and a hot-water accumulator. For the first inputs, the heat-
pump system was found optimal. If input data are changed, other systems come
into operation but the total cost is only changed by a small value because each
set of data leads to new optimal solutions. We have shown the importance
of using binary integers in order to model increments in the cost functions.
Ordinary linear programming resulted in systems that differ significantly from
the MILP solutions.



Month Hours District heating Heat-pump Total
Power Energy Cost Power Energy Cost cost

January 368 45.37 16,696 4,569 - - - 4,569
376 9.81 3,689 1,010 38.05 14,307 2,337 3,347

February 336 42.28 14,206 3,888 - - - 3,888
360 878 3,161 865 38.05 13,698 2,237 3,102

March 336 29.78 10,006 2,739 - - - 2,739
408 - - - 38.05 15,524 2,536 2,536
April 720 - - - 18.86 13,579 1,720 1,720
May 744 - - - 4.70 3,496 443 443
June 720 - - - 4.86 3,499 443 443
July 744 - - - 4.70 3,496 443 443
August 744 - - - 4.70 3,496 443 443
September 720 - - - 6.46 4,651 589 589
October 744 - - - 22.16 16,487 2,088 2,088
November 336 32.98 11,081 3,033 - - - 3,033
384 - - - 35.88 13,778 2,250 2,250
December 352 40.26 14,171 3,878 - 3,878

392 4.06 1,592 436 38.05 14,916 2,436 2,872
Total 8,784 - 74,602 20,418 - 120,926 17,964 38,383

Table 5: Energy consumption and cost for the low subscription fee system
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