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Abstra
t

When a building is subje
t for refurbishment it is important to add

only su
h measures that will redu
e the Life Cy
le Cost, LCC, for the

building. Even better is to add measures that will, not only redu
e the


ost, but minimise the LCC. One means for su
h an optimisation is to use

the so 
alled Linear Programming, LP, te
hnique. One drawba
k with

LP models is that they must be entirely linear and therefore two variables


annot be, for example, multiplied with ea
h other. The 
osts for building

retro�ts are, however, not very often linear but instead �steps� are present

in their 
ost fun
tions. This 
alamity 
an, at least to a part, be solved

by introdu
ing binary integers, i. e. variables that only 
an assume two

values, 0 or 1. In this paper it is des
ribed how to design su
h a Mixed

Integer Linear Programming, MILP, model of a building and how di�erent


ost elements of the 
limate shield in�uen
e the optimal solution.

INTRODUCTION

In re
ent years LP and MILP programming have found an in
reased interest

among resear
hers in applied engineering. The reason for this is to a part the

introdu
tion of fast personal 
omputers one everyone's desk. Problems that

took hours, ore even days, to solve 
an nowadays be solved in minutes or even

se
onds. It is therefore possible to design models with several thousand variables

without having to wait for hours to see the optimal result. This is espe
ially

valid for MILP problems be
ause the so 
alled bran
h and bound method must

solve two LP problems for ea
h integer that is introdu
ed. The model is initially

optimised by assuming that no variables at all are integers. When this have been

done the problem is split in two LP problems. One problem where one of the

integers are bound to a value less than or equal to zero and one problem where

the integer is set to a value greater or equal to 1. A MILP problem therefore

needs substantially more time when it is solved than an ordinary LP ditto.

There are numerous papers about LP and MILP programming present in s
i-

enti�
 journals, see e. g. Referen
es [1℄, [2℄, [3℄, [4℄ and [5℄. Papers about MILP

and buildings, however, are not very 
ommon but some have been presented in

re
ent years, see e. g. [6℄ and [7℄.
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THE MILP MODEL

All LP and MILP problems have a mathemati
al expression, 
alled the obje
tive

fun
tion. In our 
ase this fun
tion shows the total LCC for the building and

the expression is therefore to be minimised. One way to a
hieve this is to

set all variables to zero but if that is the 
ase no heating or building a
tivity is

present. A number of 
onstraints must therefore be introdu
ed. One 
onstraint,

for example, as
ertains that enough heat is supplied to the building while others

are used for �nding proper thermal sizes of di�erent heating equipment whi
h

are possible to install in the building. In Referen
e [7℄ the method is shown in

detail for the heating equipment and insulation measures and therefore only a

brief des
ription is made here.

The need for spa
e heating in a building depends on the 
limate. It is not

possible, or at least very impra
ti
al, to use the outdoor temperature in every

moment and from this 
al
ulate the energy 
ost for a long period of time. There

is therefore a need for splitting one year into several segments and use monthly

mean temperatures as a base for the 
al
ulations. In Sweden, the ele
tri
ity

rates sometimes make it pro�table to use heat pumps for spa
e and hot water

heating. The ele
tri
ity pri
e is high during the winter and low at summer.

The pri
e also di�ers a

ording to the time of day. Weekends have a low pri
e

during some of the months. We have therefore found it pra
ti
al to divide the

year into 22 segments where the months November to Mar
h are split into three

segments ea
h while April to O
tober only holds one segment ea
h. The need

for spa
e- and domesti
 hot water heating is presented in Figure 1.

Figure 1: Thermal demand for the studied building, see Referen
e [8℄

In January the �rst segment in
ludes 368 hours where the ele
tri
ity rate is

high. The total amount of energy in this segment has been 
al
ulated to 16,697

kWh and the demand is therefore 45.37 kW, see Referen
e [8℄ for all details.

The need for heat must be 
overed by distri
t heating, a heat pump, an oil-�red
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boiler or a mix of these systems. The thermal sizes of these heat sour
es are not

known and therefore three variables PDH01, PHP01, and POB01 are introdu
ed.

The index 01 shows that the �rst segment is 
onsidered. The 
ost for distri
t

heat in Linköping, Sweden, is 0.26 SEK/kWh, the running 
ost for the oil-�red

boiler is 0.39 SEK/kWh, while the ele
tri
ity 
ost is 1.01 SEK/kWh in this high


ost segment. (1 SEK = 7 US$.) Ea
h system has an e�
ien
y whi
h is set to

0.95 for distri
t heating, 0.75 for the oil boiler and 3.0 for the heat pump. It

is assumed that the system is used during the next 50 years and that the real

dis
ount rate is 5% whi
h leads to a present value fa
tor of 18.26. The �rst

small part of the obje
tive fun
tion 
an now be elaborated:

[0.26×
1

0.95
×PDH01+0.39×

1

0.75
×POB01+1.01×

1

3.0
×PHP01]×368×18.26 (1)

The other 21 segments are added in a similar way. The equipment must also

be installed and pur
hased. It is assumed that the di�erent systems 
osts are:

• 40,000 + 60 ×PDH for distri
t heating

• 55,000 + 60 ×POB for the oil boiler

• 60,000 + 5,000 ×PHP for the heat pump

The 
osts, however, must also be 
al
ulated as present values. The pra
ti
e

life for the distri
t heating system is assumed to be 25 years while the oil boiler

and the heat pump is thought to be 15 years. Further, assuming a total proje
t

life of 50 years and a real dis
ount rate of 5 % the present value for the distri
t

heating system will be
ome:

(40, 000 + 60× PDH)× (1 + (1 + 0.05)−25) = 51, 812 + 77.72× PDH (2)

Note that PDH et 
. now are presented without indi
es and therefore shows

the maximum thermal size of the equipment. The model must therefore in
lude

expressions for �nding the maximum need for e. g. distri
t heat in all the 22

segments. This is implemented by use of 22 
onstraints for ea
h heating devi
e,

and one is shown here:

1

0.95
× PDH01 − PDH ≤ 0.0 (3)

As 
an be seen above the 
ost for the distri
t heating equipment starts with

a step, i.e. 40,000 SEK. This 
ost must be present in the obje
tive fun
tion

but only if distri
t heating is optimal to use. This behaviour is a
hieved by

implementing a binary variable A1 whi
h only 
an assume the values 0 or 1,

and by introdu
ing one more 
onstraint:

A1 ×M − PDH ≥ 0.0 (4)

M is set to a value higher than PDH might ever take e. g. 200, note that

the maximum demand is about 72 kW in Figure 1. If PDH has a value greater

than zero, A1 must be
ome equal to 1. A1 must also be present in the obje
tive

fun
tion and then multiplied by the 
ost 51,812. Be
ause of the minimisation
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A1 turns to 0 if PDH equals zero as well. This part of the obje
tive fun
tion

therefore be
omes:

A1×51, 812+77.72×PDH+A2×56, 260+61.33×POB+A3×105, 933+8, 827×PHP (5)

A su�
ient amount of heat must be supplied to the building. In the �rst

time segment this amount has been 
al
ulated to 16,697 kWh. By use of 22


onstraints of whi
h the �rst is:

(PDH01 + POB01 + PHP01)× 368 ≥ 16, 697 (6)

this is a
hieved.

It is also possible to a�e
t the energy need in the building by applying extra

insulation and better windows. The method used for extra insulation is to a

part presented in Referen
e [9℄ and is therefore only des
ribed in brief here. The

new U-value for an extra insulated wall 
an be 
al
ulated as:

UNEW =
kNEW × UEXI

kNEW + UEXI × t
(7)

where kNEW is the 
ondu
tivity for the new insulation in

W

m×
◦C

, UEXI the

existing U-value in

W

m2
×

◦C
, and t the thi
kness of the added insulation in metres.

Unfortunately, equation (7) is not linear and thus so 
alled stepwise linearisation

must be used. A number of binary integers, in our 
ase 11 variables have been

used, must therefore be introdu
ed. The �rst integer, IS0, is applied for 0.02 m

of extra insulation, the se
ond one for 0.04 m and so on. Only one of the integers


an be 1 while the others must be 0. If all integers are 0 it is not optimal to

add insulation at all, see equation, i. e. 
onstraint, number (8).

IS0 + IS1 + IS2 + IS3 + . . .+ IS10 ≤ 1 (8)

The integers IS are after this 
oupled to the 
ost for extra insulation and are

added to the obje
tive fun
tion. By use of equation 7 they are also 
oupled to

the de
rease of the energy demand in the building and are added to expression 5.

Insulation is of no use outside of the heating season. An energy balan
e for the

building shows that four segments, viz. 11-14, only need energy for domesti
 hot

water heating. The IS variables are therefore not present for those segments.

The same pro
edure is valid for windows but now di�erent window 
onstru
-

tions are 
oupled to a set of binary integers. The model must deal with insulation

measures for the atti
, the �oor and the walls whi
h 
an be insulated both on

the outside and on the inside of the house. Three types of window retro�ts are

dealt with, triple-glazed windows, windows with low emissivity 
oatings and gas

�lled windows. Four di�erent orientations, north, east, south and west is also

present. There are therefore about 75 binary integers present in the model.

One very important part to deal with is the present state of the existing

windows or the fa
ade of the building. If the windows for example, are a�e
ted

by rot they must be 
hanged immediately to new ones and the remaining life

of the existing windows is therefore set to null. If this is not the 
ase they have

a salvage value whi
h must be 
onsidered. This is dealt with by use of a so


alled unavoidable, or inevitable, retro�t 
ost. In our 
ase study 27 windows
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are oriented to the east. Ea
h window has an area of 2.8 m

2
and the 
ost for

a new window of the same type that is present today is assumed to be 1,100

SEK/m

2
. If no measures are made for thermal reasons 83,160 SEK must be

invested in order to 
hange the bad existing windows to new ones of the same

type. Assume that new windows last 30 years before they have to be 
hanged

again. A present value 
al
ulation for 50 years and a 5% dis
ount rate shows:

83, 160+ 83, 160× (1 + 0.05)−30
−

83, 160

3
× (1 + 0.05)−50 = 99, 984SEK

If the original windows were perfe
t in 
ondition no investment have to be

made for 30 years and the expression would have looked like:

83, 160× (1 + 0.05)−30
−

83, 160

3
× (1 + 0.05)−50 = 16, 824SEK

If triple-glazed windows, with a 
ost of 1,300 SEK/m

2
are installed at year 0

the present value be
omes 118,162 SEK. In the �rst 
ase with poor windows the

better thermal behaviour must save 18,178 SEK before triple-glazed windows

are pro�table while they have to save 101,338 SEK if the original windows are

in perfe
t shape. The same pro
edure must be 
onsidered for all the building

measures in the model. In Table 1 the inevitable 
osts for the building are

shown both if no thermal improvement is made and for the 
ases where better

windows and added insulation are applied.

Measure Cost [SEK℄

No retro�t 407,632

Atti
 �oor insulation 407,632

Floor insulation 407,632

External wall insulation, outside 222,832

External wall insulation, inside 376,832

Windows,

north 407,632

east 307,648

south 407,638

west 315,584

Table 1: Unavoidable or inevitable retro�t 
osts in SEK for the building

To the unavoidable 
ost above the a
tual 
ost for the retro�t must be added

whi
h in turn depends on what solution that is optimal. If none of the �thermal�

retro�ts are optimal 407,632 SEK must be added to the obje
tive fun
tion. If

triple-glazed windows oriented to the east are optimal the unavoidable 
ost

is 307,648 SEK while the new windows 
ost is 118,162 SEK or a total 
ost

of 425,810 SEK. This sum must therefore be 
ompared with the unavoidable


ost when no retro�ts at all are present and the di�eren
e, i. e. 18,178 SEK

whi
h is 
oupled to a binary variable and added to the obje
tive fun
tion. The

model must therefore in
lude a new set of 
onstraints where the �rst sets the

unavoidable 
ost if no retro�ts are optimal:

IS0 + IS1 + . . .+ IS10 + F00 + F02 + . . .+ F23 +NOR ≥ 1 (9)
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The binary integers F00 to F23 shows that window retro�ts are optimal if

the values equal 1. If all the IS and F integers equal 0, NOR (for no retro�t)

must be 1 and this binary integer is then 
oupled with the 
ost 407,632 SEK

above and inserted in the obje
tive fun
tion. The se
ond 
onstraint adds the

same value if one of the retro�ts are 
hosen:

IS0 + IS1 + . . .+ IS10 + F00 + F01 + . . .+ F23 +M ×R ≥ M + 1 (10)

M is here set to a value higher than the possible sum of all retro�t integers, in

our 
ase 200. If one or more retro�ts are optimal R (for retro�t) must therefore

be
ome 1 and the R variable is 
oupled to the unavoidable 
ost and inserted in

the obje
tive fun
tion. This awkward way is needed be
ause it is not possible to

add just a value to the obje
tive fun
tion. The unavoidable 
ost is needed here

in order to a
hieve the a

urate LCC but it does not a�e
t the optimal solution.

The next four 
onstraints are needed be
ause it must not be possible to add

both triple-glazed windows and windows with better thermal performan
e in

the same orientation at the same time. One 
onstraint is:

F00 + F10 + F20 ≤ 1 (11)

The �rst �gure in the index 00 shows that it is triple-glazed windows while

the se
ond �gure shows the orientation where 0 means north, 1 means east and

so on.

In our 
ase the demand 
harge in the ele
tri
ity tari� depends on the fuse

that must be used, see Table 2.

Fuse size [A℄ 16 20 25 35 50 63 80 100

Annual 
ost [SEK℄ 1,025 1,165 1,375 1,863 2,713 3,475 4,525 6,338

Table 2: Fuse tari� for Linköping, Sweden

The model must therefore in
lude expressions that 
al
ulates the 
urrent and

whi
h set proper values in the obje
tive fun
tion. In this 
ase study ele
tri
ity


an only be used for running two heat pumps. The �rst one, PHP, is used as

a normal heating devi
e taking the heat from the ground water while the other

one, PEA, takes it from the exhaust air. (It is not plausible that both heat

pumps are optimal but we do not now in advan
e whi
h solution is preferred.)

The e�
ien
y for the �rst one is set to 3.0 and for the se
ond one to 2.0.

Therefore the following 
onstraints are used:

1

3.0
× PHP01 − PHP ≥ 0 Compare with expression no. (3) (12)

1

2.0
× PEA01 − PEA ≥ 0 (13)

PHP + PEA − PEL ≤ 0 (14)

−
1000.

380× 30.5 × PEL

+ CU = 0 (15)
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Equation (15) is only used for 
al
ulating the 
urrent when we know the

demand for ele
tri
ity and the voltage whi
h is 380 V. If the 
urrent is lower

than 35 A, but higher than 25 A, an annual 
ost of 1,863 SEK must be present

in the obje
tive fun
tion, see Table 2. This is a
hieved by use of 8 new binary

integers, E, and 8 integers Y . In ea
h set only one of the integers 
an be 1.

Eight new 
onstraints must be present in the model and the �rst one is presented

below:

CU − 16× E0 +M1 × Y0 ≤ M1 (16)

M1 is a large value, in our 
ase 10,000. If Y0 is set equal to 1, and CU is

lower than 16 whi
h is the �rst fuse size in Table 2, E0 �nds the value 1. E0

is then 
oupled to the annual 
ost 1,025 SEK whi
h is present in the obje
tive

fun
tion as a present value. If CU is larger than 16, E0 must be set to 0.

The model now in
ludes 150 
onstraints and 182 variables where 74 are

binary integers.

OPTIMISATION

The model above is implemented in a Windows 95 program and written in 
lassi


C. The program writes the mathemati
al problem to a so 
alled MPS-�le whi
h

is an often used standard. Several optimisation 
odes 
an read su
h �les e. g.

CPLEX or LAMPS, but we have used the ZOOM program, see Referen
e [10℄,

just be
ause we have some experien
e in that produ
t. By use of ZOOM it is

possible to �nd the optimal way to heat the building. First an oil-�red boiler,

thermal size 21.3 kW, must be 
ombined with a heat pump of 37.8 kW, whi
h

add up to 59.1 kW. Two building retro�ts were also optimal viz., low emissivity

triple-glazed windows and weather-stripping. The �rst measure de
reases the

demand from 71.96 to 61.80 kW while the se
ond lowers the demand to 59.1

kW. The heating equipment is therefore su�
ient in thermal size. In Table 3

the energy need for the optimal solution is shown in detail.

From Table 3 the average energy 
ost for ea
h kWh 
an be 
al
ulated, i.e.

0.23 SEK. The value is of that size be
ause of the heat pump. This is also the

reason for only two building retro�ts being present in the optimal solution. It

shall be noted here that time segment number 15 only shows 3.23 kW where

instead it should have been 4.86 kW. The higher value must be present in order

to provide the building with domesti
 hot water. The reason for the wrong value

is due to the energy balan
e for the existing building where no retro�ts were

implemented. The balan
e shows that the segments 11-14 only are used for hot

water heating while segment 15 must use heat also for spa
e heating. The binary

variables 
oupled to window retro�ts and weather-stripping for segments 11 -

14 are therefore not present in the in the MILP model. Segment 15, however,

has su
h integers and therefore the model saves heat due to the retro�ts even

if the value be
omes lower than 3,500 kWh/month. The heating season will

be
ome shorter if more retro�ts are optimal but the phenomenon is here only

present in one time segment. The total energy 
ost in Table 3 whi
h o

ur every

year must now be 
al
ulated as a present value. The 
ost is therefore multiplied

with 18.26, see expression (1). The heating equipment 
ost 
an be 
al
ulated by

use of expression (5). It was optimal to 
hoose triple-glazed windows with low

emissivity 
oating. The 
ost for su
h windows is assumed to be 1,500 SEK/m

2
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Segment Hours Oil-Boiler Heat Pump Total 
ost

No [h℄ Demand Energy Cost Demand Energy Cost

1 368 - - - 36.62 13,476 4,536 4,536

2 184 2.51 462 240 37.88 6,970 1,308 1,548

3 192 - - - 37.88 7,272 1,365 1,365

4 336 - - - 33.49 11,253 3,788 3,788

5 168 2.68 450 234 37.88 6,364 1,194 1,428

6 192 - - - 35.85 6,883 1,292 1,292

7 336 - - - 22.06 7,412 2,495 2,495

8 168 - - - 35.66 5,990 1,124 1,124

9 240 - - - 26.59 6,382 1,198 1,198

10 720 - - - 13.11 9,439 1,428 1,428

11 744 - - - 4.70 3,496 529 529

12 720 - - - 4.86 3,499 529 529

13 744 - - - 4.70 3,496 529 529

14 744 - - - 4.70 3,499 529 529

15 720 - - - 3.23 2,326 352 352

16 744 - - - 17.07 12,700 1,922 1,922

17 336 - - - 26.28 8,830 2,973 2,973

18 168 - - - 30.93 5,196 975 975

19 216 - - - 27.83 6,011 1,128 1,128

20 352 - - - 32.58 11,468 3,861 3,861

21 176 - - - 35.49 6,246 1,172 1,172

22 216 - - - 33.55 7,247 1,359 1,359

Sum 8784 - 912 474 - 155,455 35,586 36,060

Table 3: Optimal demand, kW, energy need, kWh, and 
ost in SEK for the

energy use in the studied building

while weather-stripping has a 
ost of 14,000 SEK and a life of 10 years. In

Table 4 all these 
osts are presented as present values and the sum represents

the total LCC.

The sum in Table 4 di�ers only with about 2,000 SEK from the value 
al
u-

lated by ZOOM.

It was not found pro�table to add extra insulation to the 
limate shield.

Experien
e from the OPERA-model shows, however, that at least extra atti


�oor insulation many times is a pro�table retro�t, see Referen
e [11℄. When

MILP is used it is not possible to use the so 
alled ranging method, i.e. to

examine in whi
h interval a variable is optimal. Therefore, it is ne
essary to


hange a variable in the input data and optimise the problem on
e again. One

suitable parameter to 
hange is present in the 
ost fun
tion for insulation. The


ost for all insulation measures is presented in the following form:

Cins = C1 + C2 + C3 × t (17)

where C1 shows the unavoidable 
ost in SEK/m

2
, C2 the �step� 
ost for the

insulation in SEK/m

2
, C3 the 
ost in SEK/(m

2× m) and t the added amount of

new insulation in m. If the 
ost C2 is 
hanged it will only a�e
t the possibility

for insulation to be optimal, not the amount of insulation that should be added

whi
h is the 
ase if C3 is 
hanged. In the original 
ase C2 was set to 260 SEK/m
2

and this is now 
hanged to 200. The optimisation now shows that 0.14 m atti
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Oil-boiler, (28.4 kW) 58,001

Heat pump, (12.6 kW) 217,153

Fuse tari�, (20 A) 21,273

Energy 658,456

Windows, east 136,341

Windows, west 125,521

Weather-stripping 33,099

Unavoidable retro�t 
ost 215,600

Life-Cy
le Cost 1,465,444

Table 4: Present value 
osts and LCC in SEK for the studied building

�oor insulation must be added. Be
ause of this a slightly smaller heat pump

should be used and, further, the total LCC is redu
ed to 1.454 MSEK. (The

shift between extra insulation or not seems to emerge for a C2 
ost of about 240

SEK/m

2
.)

Above it was found that triple-glazed windows were optimal. This is so

be
ause the original double-glazed windows were worn out and their existing

remaining life was set to 0 years. Suppose they have 20 years left before they

must be 
hanged. A new optimisation shows that window retro�ts no longer

are optimal, but instead 0.16 m of extra insulation should be added to the atti


�oor. Some extra optimisations show that window retro�ts falls out from the

solution if the original ones have approximately 15 years left of their remaining

life.

CONCLUSIONS

It is shown that a building 
an be des
ribed mathemati
ally in the form of a

Mixed Integer Linear Program, MILP, model. The integers are very important

be
ause �steps� in the 
ost fun
tions 
an be dealt with. Small 
hanges in these

steps might result in di�erent optimal solutions. Fortunately, the optimisation

results in solutions that di�ers very little from ea
h other in terms of the min-

imised Life-Cy
le Cost. Small errors in input data do therefore not ne
essarily

lead to hazardous solutions as long as the proprietor a
ts in an optimal way. If

however, 
ombinations of measures are 
hosen that do not �t together the result

is likely to be an expensive experien
e.
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