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Abstrat

When a building is subjet for refurbishment it is important to add

only suh measures that will redue the Life Cyle Cost, LCC, for the

building. Even better is to add measures that will, not only redue the

ost, but minimise the LCC. One means for suh an optimisation is to use

the so alled Linear Programming, LP, tehnique. One drawbak with

LP models is that they must be entirely linear and therefore two variables

annot be, for example, multiplied with eah other. The osts for building

retro�ts are, however, not very often linear but instead �steps� are present

in their ost funtions. This alamity an, at least to a part, be solved

by introduing binary integers, i. e. variables that only an assume two

values, 0 or 1. In this paper it is desribed how to design suh a Mixed

Integer Linear Programming, MILP, model of a building and how di�erent

ost elements of the limate shield in�uene the optimal solution.

INTRODUCTION

In reent years LP and MILP programming have found an inreased interest

among researhers in applied engineering. The reason for this is to a part the

introdution of fast personal omputers one everyone's desk. Problems that

took hours, ore even days, to solve an nowadays be solved in minutes or even

seonds. It is therefore possible to design models with several thousand variables

without having to wait for hours to see the optimal result. This is espeially

valid for MILP problems beause the so alled branh and bound method must

solve two LP problems for eah integer that is introdued. The model is initially

optimised by assuming that no variables at all are integers. When this have been

done the problem is split in two LP problems. One problem where one of the

integers are bound to a value less than or equal to zero and one problem where

the integer is set to a value greater or equal to 1. A MILP problem therefore

needs substantially more time when it is solved than an ordinary LP ditto.

There are numerous papers about LP and MILP programming present in si-

enti� journals, see e. g. Referenes [1℄, [2℄, [3℄, [4℄ and [5℄. Papers about MILP

and buildings, however, are not very ommon but some have been presented in

reent years, see e. g. [6℄ and [7℄.
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THE MILP MODEL

All LP and MILP problems have a mathematial expression, alled the objetive

funtion. In our ase this funtion shows the total LCC for the building and

the expression is therefore to be minimised. One way to ahieve this is to

set all variables to zero but if that is the ase no heating or building ativity is

present. A number of onstraints must therefore be introdued. One onstraint,

for example, asertains that enough heat is supplied to the building while others

are used for �nding proper thermal sizes of di�erent heating equipment whih

are possible to install in the building. In Referene [7℄ the method is shown in

detail for the heating equipment and insulation measures and therefore only a

brief desription is made here.

The need for spae heating in a building depends on the limate. It is not

possible, or at least very impratial, to use the outdoor temperature in every

moment and from this alulate the energy ost for a long period of time. There

is therefore a need for splitting one year into several segments and use monthly

mean temperatures as a base for the alulations. In Sweden, the eletriity

rates sometimes make it pro�table to use heat pumps for spae and hot water

heating. The eletriity prie is high during the winter and low at summer.

The prie also di�ers aording to the time of day. Weekends have a low prie

during some of the months. We have therefore found it pratial to divide the

year into 22 segments where the months November to Marh are split into three

segments eah while April to Otober only holds one segment eah. The need

for spae- and domesti hot water heating is presented in Figure 1.

Figure 1: Thermal demand for the studied building, see Referene [8℄

In January the �rst segment inludes 368 hours where the eletriity rate is

high. The total amount of energy in this segment has been alulated to 16,697

kWh and the demand is therefore 45.37 kW, see Referene [8℄ for all details.

The need for heat must be overed by distrit heating, a heat pump, an oil-�red
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boiler or a mix of these systems. The thermal sizes of these heat soures are not

known and therefore three variables PDH01, PHP01, and POB01 are introdued.

The index 01 shows that the �rst segment is onsidered. The ost for distrit

heat in Linköping, Sweden, is 0.26 SEK/kWh, the running ost for the oil-�red

boiler is 0.39 SEK/kWh, while the eletriity ost is 1.01 SEK/kWh in this high

ost segment. (1 SEK = 7 US$.) Eah system has an e�ieny whih is set to

0.95 for distrit heating, 0.75 for the oil boiler and 3.0 for the heat pump. It

is assumed that the system is used during the next 50 years and that the real

disount rate is 5% whih leads to a present value fator of 18.26. The �rst

small part of the objetive funtion an now be elaborated:

[0.26×
1

0.95
×PDH01+0.39×

1

0.75
×POB01+1.01×

1

3.0
×PHP01]×368×18.26 (1)

The other 21 segments are added in a similar way. The equipment must also

be installed and purhased. It is assumed that the di�erent systems osts are:

• 40,000 + 60 ×PDH for distrit heating

• 55,000 + 60 ×POB for the oil boiler

• 60,000 + 5,000 ×PHP for the heat pump

The osts, however, must also be alulated as present values. The pratie

life for the distrit heating system is assumed to be 25 years while the oil boiler

and the heat pump is thought to be 15 years. Further, assuming a total projet

life of 50 years and a real disount rate of 5 % the present value for the distrit

heating system will beome:

(40, 000 + 60× PDH)× (1 + (1 + 0.05)−25) = 51, 812 + 77.72× PDH (2)

Note that PDH et . now are presented without indies and therefore shows

the maximum thermal size of the equipment. The model must therefore inlude

expressions for �nding the maximum need for e. g. distrit heat in all the 22

segments. This is implemented by use of 22 onstraints for eah heating devie,

and one is shown here:

1

0.95
× PDH01 − PDH ≤ 0.0 (3)

As an be seen above the ost for the distrit heating equipment starts with

a step, i.e. 40,000 SEK. This ost must be present in the objetive funtion

but only if distrit heating is optimal to use. This behaviour is ahieved by

implementing a binary variable A1 whih only an assume the values 0 or 1,

and by introduing one more onstraint:

A1 ×M − PDH ≥ 0.0 (4)

M is set to a value higher than PDH might ever take e. g. 200, note that

the maximum demand is about 72 kW in Figure 1. If PDH has a value greater

than zero, A1 must beome equal to 1. A1 must also be present in the objetive

funtion and then multiplied by the ost 51,812. Beause of the minimisation
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A1 turns to 0 if PDH equals zero as well. This part of the objetive funtion

therefore beomes:

A1×51, 812+77.72×PDH+A2×56, 260+61.33×POB+A3×105, 933+8, 827×PHP (5)

A su�ient amount of heat must be supplied to the building. In the �rst

time segment this amount has been alulated to 16,697 kWh. By use of 22

onstraints of whih the �rst is:

(PDH01 + POB01 + PHP01)× 368 ≥ 16, 697 (6)

this is ahieved.

It is also possible to a�et the energy need in the building by applying extra

insulation and better windows. The method used for extra insulation is to a

part presented in Referene [9℄ and is therefore only desribed in brief here. The

new U-value for an extra insulated wall an be alulated as:

UNEW =
kNEW × UEXI

kNEW + UEXI × t
(7)

where kNEW is the ondutivity for the new insulation in

W

m×
◦C

, UEXI the

existing U-value in

W

m2
×

◦C
, and t the thikness of the added insulation in metres.

Unfortunately, equation (7) is not linear and thus so alled stepwise linearisation

must be used. A number of binary integers, in our ase 11 variables have been

used, must therefore be introdued. The �rst integer, IS0, is applied for 0.02 m

of extra insulation, the seond one for 0.04 m and so on. Only one of the integers

an be 1 while the others must be 0. If all integers are 0 it is not optimal to

add insulation at all, see equation, i. e. onstraint, number (8).

IS0 + IS1 + IS2 + IS3 + . . .+ IS10 ≤ 1 (8)

The integers IS are after this oupled to the ost for extra insulation and are

added to the objetive funtion. By use of equation 7 they are also oupled to

the derease of the energy demand in the building and are added to expression 5.

Insulation is of no use outside of the heating season. An energy balane for the

building shows that four segments, viz. 11-14, only need energy for domesti hot

water heating. The IS variables are therefore not present for those segments.

The same proedure is valid for windows but now di�erent window onstru-

tions are oupled to a set of binary integers. The model must deal with insulation

measures for the atti, the �oor and the walls whih an be insulated both on

the outside and on the inside of the house. Three types of window retro�ts are

dealt with, triple-glazed windows, windows with low emissivity oatings and gas

�lled windows. Four di�erent orientations, north, east, south and west is also

present. There are therefore about 75 binary integers present in the model.

One very important part to deal with is the present state of the existing

windows or the faade of the building. If the windows for example, are a�eted

by rot they must be hanged immediately to new ones and the remaining life

of the existing windows is therefore set to null. If this is not the ase they have

a salvage value whih must be onsidered. This is dealt with by use of a so

alled unavoidable, or inevitable, retro�t ost. In our ase study 27 windows
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are oriented to the east. Eah window has an area of 2.8 m

2
and the ost for

a new window of the same type that is present today is assumed to be 1,100

SEK/m

2
. If no measures are made for thermal reasons 83,160 SEK must be

invested in order to hange the bad existing windows to new ones of the same

type. Assume that new windows last 30 years before they have to be hanged

again. A present value alulation for 50 years and a 5% disount rate shows:

83, 160+ 83, 160× (1 + 0.05)−30
−

83, 160

3
× (1 + 0.05)−50 = 99, 984SEK

If the original windows were perfet in ondition no investment have to be

made for 30 years and the expression would have looked like:

83, 160× (1 + 0.05)−30
−

83, 160

3
× (1 + 0.05)−50 = 16, 824SEK

If triple-glazed windows, with a ost of 1,300 SEK/m

2
are installed at year 0

the present value beomes 118,162 SEK. In the �rst ase with poor windows the

better thermal behaviour must save 18,178 SEK before triple-glazed windows

are pro�table while they have to save 101,338 SEK if the original windows are

in perfet shape. The same proedure must be onsidered for all the building

measures in the model. In Table 1 the inevitable osts for the building are

shown both if no thermal improvement is made and for the ases where better

windows and added insulation are applied.

Measure Cost [SEK℄

No retro�t 407,632

Atti �oor insulation 407,632

Floor insulation 407,632

External wall insulation, outside 222,832

External wall insulation, inside 376,832

Windows,

north 407,632

east 307,648

south 407,638

west 315,584

Table 1: Unavoidable or inevitable retro�t osts in SEK for the building

To the unavoidable ost above the atual ost for the retro�t must be added

whih in turn depends on what solution that is optimal. If none of the �thermal�

retro�ts are optimal 407,632 SEK must be added to the objetive funtion. If

triple-glazed windows oriented to the east are optimal the unavoidable ost

is 307,648 SEK while the new windows ost is 118,162 SEK or a total ost

of 425,810 SEK. This sum must therefore be ompared with the unavoidable

ost when no retro�ts at all are present and the di�erene, i. e. 18,178 SEK

whih is oupled to a binary variable and added to the objetive funtion. The

model must therefore inlude a new set of onstraints where the �rst sets the

unavoidable ost if no retro�ts are optimal:

IS0 + IS1 + . . .+ IS10 + F00 + F02 + . . .+ F23 +NOR ≥ 1 (9)

5



The binary integers F00 to F23 shows that window retro�ts are optimal if

the values equal 1. If all the IS and F integers equal 0, NOR (for no retro�t)

must be 1 and this binary integer is then oupled with the ost 407,632 SEK

above and inserted in the objetive funtion. The seond onstraint adds the

same value if one of the retro�ts are hosen:

IS0 + IS1 + . . .+ IS10 + F00 + F01 + . . .+ F23 +M ×R ≥ M + 1 (10)

M is here set to a value higher than the possible sum of all retro�t integers, in

our ase 200. If one or more retro�ts are optimal R (for retro�t) must therefore

beome 1 and the R variable is oupled to the unavoidable ost and inserted in

the objetive funtion. This awkward way is needed beause it is not possible to

add just a value to the objetive funtion. The unavoidable ost is needed here

in order to ahieve the aurate LCC but it does not a�et the optimal solution.

The next four onstraints are needed beause it must not be possible to add

both triple-glazed windows and windows with better thermal performane in

the same orientation at the same time. One onstraint is:

F00 + F10 + F20 ≤ 1 (11)

The �rst �gure in the index 00 shows that it is triple-glazed windows while

the seond �gure shows the orientation where 0 means north, 1 means east and

so on.

In our ase the demand harge in the eletriity tari� depends on the fuse

that must be used, see Table 2.

Fuse size [A℄ 16 20 25 35 50 63 80 100

Annual ost [SEK℄ 1,025 1,165 1,375 1,863 2,713 3,475 4,525 6,338

Table 2: Fuse tari� for Linköping, Sweden

The model must therefore inlude expressions that alulates the urrent and

whih set proper values in the objetive funtion. In this ase study eletriity

an only be used for running two heat pumps. The �rst one, PHP, is used as

a normal heating devie taking the heat from the ground water while the other

one, PEA, takes it from the exhaust air. (It is not plausible that both heat

pumps are optimal but we do not now in advane whih solution is preferred.)

The e�ieny for the �rst one is set to 3.0 and for the seond one to 2.0.

Therefore the following onstraints are used:

1

3.0
× PHP01 − PHP ≥ 0 Compare with expression no. (3) (12)

1

2.0
× PEA01 − PEA ≥ 0 (13)

PHP + PEA − PEL ≤ 0 (14)

−
1000.

380× 30.5 × PEL

+ CU = 0 (15)
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Equation (15) is only used for alulating the urrent when we know the

demand for eletriity and the voltage whih is 380 V. If the urrent is lower

than 35 A, but higher than 25 A, an annual ost of 1,863 SEK must be present

in the objetive funtion, see Table 2. This is ahieved by use of 8 new binary

integers, E, and 8 integers Y . In eah set only one of the integers an be 1.

Eight new onstraints must be present in the model and the �rst one is presented

below:

CU − 16× E0 +M1 × Y0 ≤ M1 (16)

M1 is a large value, in our ase 10,000. If Y0 is set equal to 1, and CU is

lower than 16 whih is the �rst fuse size in Table 2, E0 �nds the value 1. E0

is then oupled to the annual ost 1,025 SEK whih is present in the objetive

funtion as a present value. If CU is larger than 16, E0 must be set to 0.

The model now inludes 150 onstraints and 182 variables where 74 are

binary integers.

OPTIMISATION

The model above is implemented in a Windows 95 program and written in lassi

C. The program writes the mathematial problem to a so alled MPS-�le whih

is an often used standard. Several optimisation odes an read suh �les e. g.

CPLEX or LAMPS, but we have used the ZOOM program, see Referene [10℄,

just beause we have some experiene in that produt. By use of ZOOM it is

possible to �nd the optimal way to heat the building. First an oil-�red boiler,

thermal size 21.3 kW, must be ombined with a heat pump of 37.8 kW, whih

add up to 59.1 kW. Two building retro�ts were also optimal viz., low emissivity

triple-glazed windows and weather-stripping. The �rst measure dereases the

demand from 71.96 to 61.80 kW while the seond lowers the demand to 59.1

kW. The heating equipment is therefore su�ient in thermal size. In Table 3

the energy need for the optimal solution is shown in detail.

From Table 3 the average energy ost for eah kWh an be alulated, i.e.

0.23 SEK. The value is of that size beause of the heat pump. This is also the

reason for only two building retro�ts being present in the optimal solution. It

shall be noted here that time segment number 15 only shows 3.23 kW where

instead it should have been 4.86 kW. The higher value must be present in order

to provide the building with domesti hot water. The reason for the wrong value

is due to the energy balane for the existing building where no retro�ts were

implemented. The balane shows that the segments 11-14 only are used for hot

water heating while segment 15 must use heat also for spae heating. The binary

variables oupled to window retro�ts and weather-stripping for segments 11 -

14 are therefore not present in the in the MILP model. Segment 15, however,

has suh integers and therefore the model saves heat due to the retro�ts even

if the value beomes lower than 3,500 kWh/month. The heating season will

beome shorter if more retro�ts are optimal but the phenomenon is here only

present in one time segment. The total energy ost in Table 3 whih our every

year must now be alulated as a present value. The ost is therefore multiplied

with 18.26, see expression (1). The heating equipment ost an be alulated by

use of expression (5). It was optimal to hoose triple-glazed windows with low

emissivity oating. The ost for suh windows is assumed to be 1,500 SEK/m

2
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Segment Hours Oil-Boiler Heat Pump Total ost

No [h℄ Demand Energy Cost Demand Energy Cost

1 368 - - - 36.62 13,476 4,536 4,536

2 184 2.51 462 240 37.88 6,970 1,308 1,548

3 192 - - - 37.88 7,272 1,365 1,365

4 336 - - - 33.49 11,253 3,788 3,788

5 168 2.68 450 234 37.88 6,364 1,194 1,428

6 192 - - - 35.85 6,883 1,292 1,292

7 336 - - - 22.06 7,412 2,495 2,495

8 168 - - - 35.66 5,990 1,124 1,124

9 240 - - - 26.59 6,382 1,198 1,198

10 720 - - - 13.11 9,439 1,428 1,428

11 744 - - - 4.70 3,496 529 529

12 720 - - - 4.86 3,499 529 529

13 744 - - - 4.70 3,496 529 529

14 744 - - - 4.70 3,499 529 529

15 720 - - - 3.23 2,326 352 352

16 744 - - - 17.07 12,700 1,922 1,922

17 336 - - - 26.28 8,830 2,973 2,973

18 168 - - - 30.93 5,196 975 975

19 216 - - - 27.83 6,011 1,128 1,128

20 352 - - - 32.58 11,468 3,861 3,861

21 176 - - - 35.49 6,246 1,172 1,172

22 216 - - - 33.55 7,247 1,359 1,359

Sum 8784 - 912 474 - 155,455 35,586 36,060

Table 3: Optimal demand, kW, energy need, kWh, and ost in SEK for the

energy use in the studied building

while weather-stripping has a ost of 14,000 SEK and a life of 10 years. In

Table 4 all these osts are presented as present values and the sum represents

the total LCC.

The sum in Table 4 di�ers only with about 2,000 SEK from the value alu-

lated by ZOOM.

It was not found pro�table to add extra insulation to the limate shield.

Experiene from the OPERA-model shows, however, that at least extra atti

�oor insulation many times is a pro�table retro�t, see Referene [11℄. When

MILP is used it is not possible to use the so alled ranging method, i.e. to

examine in whih interval a variable is optimal. Therefore, it is neessary to

hange a variable in the input data and optimise the problem one again. One

suitable parameter to hange is present in the ost funtion for insulation. The

ost for all insulation measures is presented in the following form:

Cins = C1 + C2 + C3 × t (17)

where C1 shows the unavoidable ost in SEK/m

2
, C2 the �step� ost for the

insulation in SEK/m

2
, C3 the ost in SEK/(m

2× m) and t the added amount of

new insulation in m. If the ost C2 is hanged it will only a�et the possibility

for insulation to be optimal, not the amount of insulation that should be added

whih is the ase if C3 is hanged. In the original ase C2 was set to 260 SEK/m
2

and this is now hanged to 200. The optimisation now shows that 0.14 m atti
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Oil-boiler, (28.4 kW) 58,001

Heat pump, (12.6 kW) 217,153

Fuse tari�, (20 A) 21,273

Energy 658,456

Windows, east 136,341

Windows, west 125,521

Weather-stripping 33,099

Unavoidable retro�t ost 215,600

Life-Cyle Cost 1,465,444

Table 4: Present value osts and LCC in SEK for the studied building

�oor insulation must be added. Beause of this a slightly smaller heat pump

should be used and, further, the total LCC is redued to 1.454 MSEK. (The

shift between extra insulation or not seems to emerge for a C2 ost of about 240

SEK/m

2
.)

Above it was found that triple-glazed windows were optimal. This is so

beause the original double-glazed windows were worn out and their existing

remaining life was set to 0 years. Suppose they have 20 years left before they

must be hanged. A new optimisation shows that window retro�ts no longer

are optimal, but instead 0.16 m of extra insulation should be added to the atti

�oor. Some extra optimisations show that window retro�ts falls out from the

solution if the original ones have approximately 15 years left of their remaining

life.

CONCLUSIONS

It is shown that a building an be desribed mathematially in the form of a

Mixed Integer Linear Program, MILP, model. The integers are very important

beause �steps� in the ost funtions an be dealt with. Small hanges in these

steps might result in di�erent optimal solutions. Fortunately, the optimisation

results in solutions that di�ers very little from eah other in terms of the min-

imised Life-Cyle Cost. Small errors in input data do therefore not neessarily

lead to hazardous solutions as long as the proprietor ats in an optimal way. If

however, ombinations of measures are hosen that do not �t together the result

is likely to be an expensive experiene.
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