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Abstract

We describe a mathematical model of a linear program for optimization
of the use of purchased and produced electricity, (both for electricity use
and for heat), fuel mix in the district-heating plant and implementation of
energy-conservation measures, in the Malmé building stock, of the south
of Sweden. We find that energy retrofits will not be profitable compared
to producing or purchasing more electricity and heat. The reason for
this is the low cost for purchasing electricity from the national grid, even
during peak conditions, and the use of waste heat in the district-heating
plant.

INTRODUCTION

When electricity is produced in an ordinary power plant with condenser, steam
is produced by burning fuels in the boiler. In order to maximize the electricity
production, it is important to make the difference in the steam preassure as
high as possible between the inlet and outlet of the turbine. This is often
accomplished by cooling the condenser with cold water from the sea. However,
this means that about 60 % of the energy in the fuel will be wasted as luke warm
water while only about 40 % will become useful electricity. By using a district
heating grid as a cooling device for the condenser this waste heat can be used
for heating e.g. buildings. Unfortunately, it is not possible to use the waste
water directly because of its low temperature, about 10 °C. By increasing this
temperature to about 100 °C, or many times more, the district heat subscribers
could use the heat, but this will also mean that the electricity production in the
plant will get lower. The reduction, however, has been calculated to only about
10 to 15 %. Economic theory implies that optimal use of resources prevails if
short range marginal costs are used for pricing the resource. This cost equals the
amount of money saved if one unit less of the resource is produced, or the cost
for producing one extra unit. The cost for scarcity must also be included. The
district heat consumer should therefore only pay for the loss of electricity from
the Combined Heat and Power, CHP, part of the electricity plant because of
the raised temperature in the condenser. If the amount of heat is not sufficient,
the cost will of course increase and depend on the fuel mix used for supplying
more heat in the district heating plant. If the cost for producing the electricity



is higher than the market price the production should of course be terminated,
see Ref. [1]. The aim of this study is to find out how to run the different
equipment, and how to change the energy system, in an optimal way. In recent
years, there has been increased interest in using linear programming techniques
for the optimization of energy systems of various sizes, see Ref. [2]. Some
journals dealt with energy and economic mathematical modelling in its entirety
but there is no publication describing an optimal building-energy system in a
detail, although a suitable mathematic technique has been presented, see Ref.
[3] and [4] Two authors have described a model used for minimizing the cost of
the German energy system. However, buildings and building retrofits were not of
special concern in the studies, see Refs. [5],[6] and [7]. A published model deals
with building retrofits and bivalent heating systems, see Ref. [8] but the CHP
system was not included. The opposite situation applies to the model, see Ref.
[1] which forms the basis for our study in which both a CHP plant and a district-
heating system are described and analyzed by using linear programming. In a
linear program, there is always an objective function which must be minimized
or maximized, see Ref. [9]. In this study, the function contains the life-cycle cost
LCC of the energy system and this cost is then the subject for minimization.
The LCC is calculated as the sum for all building, maintenance and operating
costs of the system. The objective function is constrained by a number of
equations, e.g. requirements for electricity or heat or the size of a power plant
may not be higher or lower than a certain value. One item of special interest
is the influence of steps in the cost function, e.g demolition of old boilers etc.,
before the linear part of the cost function will start. Such problems are solved
by implementing binary integers which can only have the values 0 or 1. The
same technique is used in making a linear approximation to nonlinear functions,
e.g. estimating the influence of additional insulation on external walls. The
mathematical problem may then be solved by using an appropriate program
for solving a mixed-integer problem, see Ref. [10] We have frequently used
the LAMPS and ZOOM programs, Refs. [11] and [12]. The LAMPS system
has been implemented on a DEC-2065 machine while ZOOM may be used for
various computers.

CASE STUDY

In order to exemplify the method with linear programming, a case study of
the municipality Malmo, Sweden, is shown. The electricity load is presented in
Table 1.

The load, monitored in 1988, is split in several time segments because of the
tariff design for buying electricity from the company Sydkraft. There are high
and low price periods and the cost for electricity is shown in Table 2.

Further, there is a demand charge of 270 SEK/kW during high price periods
from November to March. (1 US$ = 6 SEK ). The district heating load was
not monitored for the same segments of time, i.e. split in time-of-use during the
day, and therefore a gigantic building has been designed resulting in a climatic
load of the same magnitude as the total monitored annual district heating load.
The reason for acting in such a way is also because there must be a consistent
influence between the retrofit actions of a building and the decrease of the
thermal load. U-values and areas for the different building parts are shown in



High Low High Low

Month (GWh) (GWh) Month (GWh) (GWh)
January 117.9 103.5  July 68.1 56.7
February  122.1 94.9 August 96.7 70.9
March 131.0 98.5 September  107.2 81.0
April 105.7 94.1 October 111.5 99.5
May 87.9 69.6 November 129.9 98.4
June 88.6 65.1 December 135.6 111.2

Table 1: Electric load in Malmo

Energy price [SEK/kWh]

Month High price  Low price
November - March 0.235 0.142
April, September, October 0.126 0.0997
May - August 0.068 0.057

Table 2: Electricity price Sydkraft 1990

Table 3.

Area U-value UxA
Building part (Mm?) (W/m?xK) (MW/K)
Attic floor 3.1 0.5 1.55
External walls 9.7 0.7 6.79
Floor 3.1 0.5 1.55
Windows, 1.2 Mpc x 1.5 m? 1.8 2.5 4.50
Total 14.39

Table 3: U-values and areas for different parts of the fictional building

Thermal losses because of ventilation is set to 5.07 MW /°C and the heat
supply for domestic hot water is calculated to 350 GWh annually. It has also
been assumed that the indoor temperature in the building is 21 °C, while the
outdoor temperatures for each month are mean values for a thirty year period,
monitored by the Swedish Meteorological and Hydrological Institute. The values
above result in a district heating load shown in Table 4.

Electricity prices are shown in Table 2, but electricity can also be produced
in the CHP plant where natural gas is burnt in the boiler. The model will also
contain a gas turbine operating on natural gas as well. The CHP plant exists
today and the cost for the equipment must subsequently be considered as so
called sunk costs. The gas turbine does not exist but is included in the model in
order to examine when new equipment will fall into the optimal solution and to
what price. District heat can be produced in a number of different ways. First
there can be garbage burnt in an incineration plant. There are also waste heat
from some industries, heat pumps in the sewage water treatment plant, coal, oil
or natural gas fired boilers. The cost for operating the different facilities, their
sizes, efficiencies and so forth are presented in Table 5.



Month Load Month Load Month Load
January  340.5 May 173.9 September 134.3
February 323.1 June 113.2  October 204.3
March 3129 July 84.2 November 254.8
April 239.3 August 91.4 December 304.2

Table 4: District heating load in Malmo in GWh

Equipment Fuel price Efficiency Taxation Heat price  Size

Type SEK/MWh SEK/MWh SEK/MWh SEK/MWh MW
Garbage 54 1.0 - 54 65
Ind. waste 100 1.0 - 100 30
Coal 42 0.8 55 107.5 125
Heat pump 198 3.0 50 116 40
Natural gas 85 0.85 29 129 120
Oil 57 0.8 89 160.3 240
Gas-turbine 85 0.25 - 340 New
CHP-plant 85 0.85 - 100 120

Table 5: Equipment in the district heating plant etc.

There are also costs emerging when retrofitting the building. These are
shown in Table 6.

Building asset Total cost [SEK /m?|
Attic floor insulation 0 + 260 + 530 xt
New double glazed windows 0+ 1100 xAy
Triple glazed windows 0+ 1300 xAy

Table 6: Building retrofit costs

The costs has the form of linear functions where the first constant shows
the cost for raising scaffolds and so on, however here set to 0. The two second
constants, when insulation measures are considered, show the influence of the
insulation as one constant value and one depending of the thickness of insulation.
The same method has been used when the so called OPERA model was designed,
see Refs. [13] and [14]. The cost for new windows depends on their sizes. There
are of course also other retrofits but these are the ones that are implemented in
the model because they fell out as candidates in an OPERA optimization.

The thermal or electric power of the equipment are examples of variables in
the model. If these are known all other aspects of the energy system could be
calculated. The cost for operating the energy system depends for example on
the rate for purchasing electricity from the market, see Table 2. The rate is split
in several segments depending on the time of the year and time of the day. The
climatic load in the district heating plant depends on the month and so does
the electricity load. There is also a rate element showing the cost for maximum
electricity demand in SEK/kW. In order to model the energy system cost it is



thus necessary to implement 29 time segments, one for high price conditions and
one for low price conditions for all twelve months, and one for the maximum
electricity load for the five months November to March. Because of the large
number of equations the model is presented only for one month, January. The
optimal solutions, presented for the various studies, are of course shown for the
complete model.

Electricity production

Electricity can be produced by the municipality by burning natural gas in an
existing steam boiler. Due to Swedish taxation the electricity production is not
taxed at all from the utilities point of view, while the natural gas heat, delivered
to the district heating grid, is taxed with 29 SEK/MWh. The natural gas price
is 85 SEK/MWh and the efficiency is 0.85. The first part of the objective
function, which is to be minimized and note no equals sign, shows the cost for
the electricity production by the use of steam:

(EDH; x 336 x 100.0 + EDL; x 408 x 100.0+

+HEH; x 336 x 129.0 + HEL; x 408 x 129.0) x 18.26 x 1076 (1)

where EDH = electricity production during high-price conditions (336 hours)
in MWe, EDL = electricity production during low price conditions (408 hours)
in MWe, HEH = heat from condenser during high price conditions in MW,
HEL = heat from condenser during low price conditions in MW, 1 = number
of the month, here January, 18.26 — the present worth factor for 5 % real dis-
count rate and a 50 year project life. There must also be an expression included
in the model where the needed electricity from the market, or production in the
gas turbine is shown. In Table 1, the need for electricity is shown for various
months. Determining variables for the need to purchase, and for gas-turbine
production of electricity yields:

(EDH, + GTHy + REH;) x 336 > 117.9 x 10 (2)

(EDLy + GTLy + RELy) x 408 > 103.5 x 10? (3)

where REH = the purchased electricity under high price conditions in MWe,
REL = the purchased electricity under low price conditions in MWe, GT H =
the electricity produced in the gas turbine, high price conditions and GT'L =
the gas-turbine electricity production during low price conditions. Expressions 2
and 3 show two constraints on the model, i.e. the need for electricity must
always be covered. However, if there is a gas-turbine to be used or there shall
be a purchase from the market, expression 1 i.e. the objective function, must
be changed in order to reflect the cost for doing so. In Table 2 the cost for each
kWh is shown and to expression 1 must subsequently be added:

(REH; x 336 x 235+ REL; x 408 x 142) x 18.26 x 10~° (4)

The gas-turbine is not an existing utility and thus this equipment must
be bought and installed before it can be used. The cost for installment and
operation is assumed to be reflected by the following cost, added to the objective
function:



85.0 x 18.26 x 107 x (GT Hy x 336 + GT Ly x 408) (5)
0.25

where 3.0 = the cost of a gas-turbine in MSEK/MWe, GTMF = the maxi-
mum fuel demand in MW for the gas turbine in any time segment, 0.25 = the
efficiency of the gas-turbine, 85.0 = the natural-gas price. It is also necessary to
ascertain that GT M F above is the largest value in MWe used during any time
segment. This is accomplished by use of the following constraints:

3.0x GTMF +

GTH,

— GTMF <0.
025 ¢ =00 (©)
GTL,

— GTMF < 0.
oo C <0.0 (7)

The model will contain 12 equations of type 6 and type 7, two for each month,
and because all of them must be valid at the same time GTMF must be set to
the largest value for any month. The same technique is used for ascertaining
the maximum demand for the electrical charge. Here, only five months are of
concern, November to March, and subsequently the following constraint for each
month must be added to the model:

EDH, + PMAX + GTH, > 443.1 (8)

where PM AX = the maximum purchase during any of the five months in
MWe, GT H; = the gas turbine production in January, high price conditions in
MWe and 443.1 = the maximum monitored demand in January. The demand
charge, 270 SEK/kW, must be added to the objective function and in MSEK
the expression becomes:

PMAX x 270 x 1073 (9)

The existing steam boiler is constrained in electrical size to 120 MW. How-
ever, also a lower limit is present. If the electrical load is lower than 40 % of
the maximum power the plant is turned off because of loss in efficiency. The
model must therefore contain expressions telling that, if electricity production
is profitable the electric power must be between 48 to 120 MW, otherwise the
plant must be turned off. This is done by use of so called binary integers which
can only have values of 0 or 1. The expressions for January become:

EDH, — INTH; x 120 < 0 (10)
EDL, — INTL; x 120 < 0 (11)
EDH; — INTH; x 48 > 0 (12)
EDLy — INTL; x 48 > 0 (13)

where INT H; = binary integer for high price conditions and INTL; =
binary integer for low price conditions. The expressions 10 to 13 tells that
EDH; must be less or equal than 120 MW if INT H; equals 1 and at the same
time larger than 48 MW. If INT H; equals 0, this will also imply that EDH;
will equal 0.



District heat production

The district heat is produced partly by use of waste heat from the electricity
production and mainly by use of different fuels in the boilers of the utility. In
the first case three units of heat are assumed to be produced for each unit of
electricity. This fact must be included in the model and using the variables from
expression 1 a set of equations may look like:

3.0 x EDH, — HEH; =0 (14)

3.0x EDL; — HEL; =0 (15)

If the waste heat from the electricity production is not sufficient for supplying
the thermal load, fuels etc. must be used in the district heating plant. There are
several different sources for this heat, see Table 5, and the cost for using them
must be implemented in the objective function. Expression 1 must therefore be
added with:

(HG1 x 54 + HW; x 100+ HCy x 107.5+

+HHP, x 116 + HGAS x 129) x 18.26 x 744 x 107° (16)

where HG; = the thermal power from garbage incineration, HW; = the
thermal power from industrial waste heat, HC7; = the thermal power from the
coal boiler, HH P; = the thermal power from the sewage water heat pumps and
HGAS = the thermal power from the natural gas boiler.

It must be noted that the energy cost for the heat pump, i.e. 116 SEK/MWh,
is an approximation of the real cost. The real cost depends on the cost for
electricity, which can be produced in the steam-turbine, the gas-turbine or be
purchased from the market. The real electricity cost will subsequently depend
on the mix of these different ways to supply the system with electricity. Un-
fortunately, it has not been possible to model this dependence in terms of a
linear or mixed integer program and subsequently an approximation, calculated
by the municipality of Malmg, has been used for the energy price of the heat
pump. The model must also contain expressions about the need for heat in
the different time segments. This need is shown in Table 4 and the resulting
expression shows that the sum of all the heat produced must exceed the need:

(HGl +HW1+HC, + HHP; +HGAS) X 744+

+HEH, x 336 + HEL; x 408 > 340.5 x 10° (17)

The different equipment have limited sizes in MW, found in Table 5, which
yield the following constraints:

HG, <65, HW, <30, HCy <125, HHP, <40, HGAS <120 (18)
The equations above complete the production part of the model, note that

only January is presented, and contains about 150 variables and a somewhat
larger amount of constraint equations. Before the energy conservation part



of the model is presented, this first part will be optimized and discussed in
some detail. Due to the large number of variables and the cumbersome way
for presenting the mathematical model to the computer program that is used
for the optimization, in the so called MPS format, a small FORTRAN program
has been developed in order to write the input data file. This program and the
MPS input data file cannot be presented here, but they will be published in
a separate report, see Ref. [15]. In Table 7, the optimal solution is presented
showing the electrical and thermal loads for the various equipment.

Month CHP Purchase District heat
High Low | High Low | Garbage Waste Coal Heat pump Nat. gas

January 120.0 48.0 | 230.9 205.7 65.0 30.0 120.8 - -
February 120.0 48.0 | 243.4 215.7 65.0 30.0 120.7 - -
March 120.0 - 236.0 262.0 65.0 30.0 125.0 22.3 -
April 51.6 - 263.0 245.1 65.0 30.0 125.0 40.0 -
May - - | 249.6 177.6 65.0 30.0 125.0 13.7 -
June - - | 251.6 176.8 65.0 30.0 62.2 - -
July - - 202.8 139.1 65.0 30.0 - - -
August - - | 262.9 188.5 65.0 30.0 27.9 - -
September - - 304.6 220.1 65.0 30.0 91.5 - -
October - - | 331.8 244.0 65.0 30.0 125.0 40.0 14.7
November | 120.0 - 248.8 267.4 65.0 30.0 82.6 - -
December | 120.0 - | 264.9 283.6 65.0 30.0 125.0 18.5 -

Table 7: Optimal solution when no energy conservation retrofits are present.
Values in MW

Production of electricity in the CHP plant is found optimal during high price
conditions in November to April but only under January and February during
low price conditions. The plant should be operating at its maximum load except
for April and at its lowest power under the low price hours. Under all other
circumstances the plant should be turned off. Electricity should be purchased
in all the time segments but the natural-gas turbine was not optimal to use at
all. In the district heating plant the garbage incineration plant and the waste
heat should be used at the maximum level all through the year, while the coal
fired boiler is to be used at the maximum performance for five months and not
at all under July. The heat pump will optimally be operating at its maximum
in April and October while it is to be turned off for 7 months. The natural gas
boiler is only to be used in October and then only 14.7 MW is necessary. Note
that the need for both electricity and heat is covered sufficiently. In January the
demand for electricity is approximately 351 MW under the high price period,
i.e. 117.9x103/336 from Tables 1 and 8.

The CHP production and the purchase in Table 8 adds up to 350.9 MW. The
total production of CHP electricity is 120x 336 + 48 x408 equalling 59 904 MWh,
which implies that three times more, or 179 712 MWh, of heat is delivered to the
district heating grid. Table 4 states that 340.5 GWh of heat must be delivered.
Using 65 x 744 of garbage heat, 30x 744 waste heat and 120.8x744 MWh of coal
heat leaves 179.9 GWh which is almost the same as the calculated contribution
from the CHP plant. The values in Table 7 could be scrutinized finding reasons
for their values but this is not accomplished in this paper. Instead the model
will be completed with the energy conservation measures of concern.



Month High price hours Low price hours

January 336 408
February 336 360
March 368 376
April 336 384
May 352 392
June 352 368
July 336 408
August 368 376
September 352 368
October 336 408
November 352 368
December 352 392

Table 8: Number of hours in the different time segments

Energy conservation measures

An energy conservation measure, e.g. an attic floor insulation will possibly
reduce the need for both electricity and heat. In this study the heat load is
calculated by use of a gigantic building, see Tables 3 and 4. If the attic floor in
this building is extra insulated the need for heat will be reduced. It has been
shown that the new U-value for the attic floor could be calculated as found in
Ref. [16]:

Ue
kn + Ue

where U,, = the new U-value in W/m?xK, k, = the conductivity for the
new insulation in W/mxK, U, = the existing U-value in W/m?xK and t =
the thickness of extra insulation in m. The equation 19 cannot be implemented
directly in the model because it is not a linear statement. However, it is possible
to calculate a new expression where the nonlinear function has been piecewise
linearized. The method is described in Ref. [17] and subsequently only a very
brief presentation is made here. The scope is to change Equation 19 so it will
no longer be a function of ¢ but instead of some binary variables, A, which
correspond to different values for t. The first thing to do is to change the
objective function. In Tables 3 and 6 the area and the cost for an attic floor
insulation is shown. The cost for the insulation is a linear function of ¢ but as
the equation 19 is not, both expressions must be changed. Calculating the cost
for extra insulation of some consecutive values for ¢ will yield a new equation.
Assume that the optimal insulation thickness is present in the range between 0
- 0.3 m of extra insulation. Further suppose that an approximation in steps of
0.05 metres is sufficient. The cost for 0.05 m of additional insulation is:

U, = kn X X t (19)

3.1 x 105 x (260 + 530 x 0.05) = 888.15M SEK (20)

For 0.1 m it is 970.3 MSEK and so on. Multiplying these values with the
binary integers will result in:



888.2x A1+970.3x A2+1052.5x A3+1134.6x A4+1216.8x A5+1298.9x Ag (21)

As before, the binary integers can only have the values of 0 or 1 and setting
a constraint:

A+ A+ As+ A+ A5+ 46 < 1 (22)

will imply that only one, or none, of the values A; - Ag can be chosen. The
additional insulation leads to a lower thermal need for heat as shown in 19 and
by calculating the difference between the old and the new U-value this decrease
in thermal flow can be implemented in the model. Assuming that the existing
U-value is 0.5 W/m?xK, see Table 3, and that the new conductivity for the
added insulation is 0.04 W/mxK will result in the values for a thickness of
insulation of 0.05, 0.1, 0.15 m etc. shown in Table 9.

Variable t New U-value Reduction

0.05 0.308 0.192
0.10 0.222 0.278
0.15 0.174 0.326
0.20 0.143 0.357
0.25 0.121 0.379
0.30 0.105 0.395

Table 9: New, and reduction of U-value in W/m?K for a retrofitted attic floor

Before implemented in the model, the values in Table 9 must be multiplied by
firstly, the area of the attic floor, i.e. 3.1 x10% m? and secondly, by the number
of degree hours assumed to be present in Malmé for each month. In Malmo
the outside mean temperature in January is -0.5 °C, the indoor temperature is
assumed to be 21 °C, and the number of hours for the same month is 744, which
means that the number of degree hours in January is assumed to be 15 996. The
decrease in the heat flow for a 0.05 extra attic insulation will subsequently be,
0.192 x 15 996 x 3.1 x 10° equalling 9.52 GWh which must correspond to
the A; value above. The equation 17 must therefore in the right hand side be
presented like this, note GWh:

340.5—-9.5x A1 — 138X Ay —16.2x A3—17.7x Ay —18.8 x A5 —19.6 X Ag (23)

Note also that the function 23 is valid only for January and the model must
subsequently contain 11 more equations of the same type. Equation 22 will
ascertain that only one, or none, of the A variables is chosen and if one is chosen
the appropriate value is added to the objective function and at the same time
the need for heat is decreased according to this extra insulation. Another way
for decreasing the heat flow is to exchange the existing double-glazed windows
for new triple-paned. In Table 6 the cost for changing windows is found. It is
assumed that the existing windows must be exchanged immediately. The cost
for changing them to new double-pane windows is, see Tables 3 and 6:
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(0 + 1100 x 1.5) x 1.2 x 10° = 1980 MSEK (24)

The cost for exchanging the windows to triple-glazed ones is calculated in
the same way to 2 340 MSEK. The difference in cost is subsequently 360 MSEK.
Further, it has been assumed that the windows have a new life of 30 years. In
this study a project life of 50 years is assumed and subsequently the difference
in cost must be transferred to the base year by use of the present worth method.
The discount rate is 5 %, and using a binary integer B for window exchange,
the cost in the objective function will become:

1
360 x [1+4 (14 0.05)73% — 3—8 x (140.05)"°] x B=432.8x B (25)

The window exchange will influence the need of heat, reducing the U-value
from 2.5 to 2.0 W/m?x K, and the right hand side of equation 17 must subse-
quently be added with:

—15996 x 1.5 x 1.2 x 10° x (2.5 —2.0) x 107? x B = —14.4 x BGWh (26)

Note that the thermal district heating load in MW also is influenced by the
building retrofits. The model does not contain any expression for this because
of the lack of a suitable cost. The existing equipment can meet the need for
heat in every moment and no new boilers etc. must be built. The model must
also contain expressions showing the cost and the consequences for conservation
of electricity. Unfortunately, it is not clear how an individual retrofit affects the
electricity load. It has thus been necessary to design another gigantic building
which could be insulated etc. in the same way as the earlier one. Information
from Malmo shows that this new building should have a transmission coeffi-
cient of about 1.975 MW /K. The use of electricity for space heating has been
calculated based on that value and the result is shown in Table 10.

Month High price Low price Month High price Low price
January 14.27 17.33 July 2.52 3.06
February 14.03 15.03 August 3.13 3.19
March 14.25 14.56 September 5.21 5.45
April 9.95 11.38 October 8.03 9.75
May 6.95 7.74 November 11.19 11.70
June 4.17 4.36 December 13.21 14.71

Table 10: Assumed electricity used in GWh for space heating in Malmo

Further it is assumed that the district heated and the electrically heated
building behave equally. Thus it is supposed that about 35 % of the electric
space heating load depends on the ventilation, which implies that 1.284 MW /K
is a result from transmission of heat through the walls etc. In order to examine
if an attic floor insulation will be optimal it is in the same way assumed that
about 11 % of the heat flow depends on this asset, resulting in 0.138 MW /K.
If the existing attic has the same U-value, 0.5 W/m?xK this will imply that

11



the area of the attic floor is 276 000 m2. There is now sufficient information to
design the amendments to the objective, and other functions and constraints.
Firstly, expression 1 must be completed with, see the design of expression 21
etc.:

79.25% D1486.58 x D2+93.91 x D3+101.24x D4+108.57x D5+115.90x Dg (27)

where the variables D; - Dg are binary integers. The influence on the electric
load is calculated the same way as above, see 23 etc. and thus only the result
is shown:

117.9-0.384x D1—0.56 X D3 —0.65x D3—0.71x D4 —0.76 x D5 —0.79x Dg (28)

103.5—0.47 x D1 —0.67 x D2 —0.79 x D3—087 X D4—092 X D5 —0.96 x DG (29)

D1+ Do+ D3+ Dy+ Ds+ Dg <1 (30)

The two expressions 28 and 29 must be added to 2 and 3 respectively. Note
that 28 deals with the high price period and 29 with the low price period. The
extra attic floor insulation will also decrease the demand of electricity in MW.
This is of interest during the 5 months when there is a cost for the demand due
to the tariff of electricity. The dimensioning outdoor temperature is assumed
to be - 14 °C and the desired indoor temperature 21 °C.The right hand side of
Equation 8 must subsequently be completed with:

443.1—-1.86x D1 —2.69% Dy —3.16 x D3—3.46 X D4 —3.67x D5 —3.82x D¢ (31)

Finally, the model contains a heat storage in order to store heat during the
low price periods and using it under more costly time segments. The storage
is assumed to use a water tank for the accumulation. The capacity of heat in
water is about 4.18 KJ/kgxK which implies about 1.16 kWh/m3xK. Further
it is assumed that the temperature range of the water is about 40 K meaning
that about 46 kWh can be stored in one m3. The total cost for the storage
has been assumed to 7 000 SEK/m? or about 150 SEK/kWh, due to a minor
investigation in Ref. [15]. The storage is used for storing heat under the night
hours, from 2200 to 0600. Each working day, 8 hours are present while during
Saturdays and Sundays it is a long low price period without any interupt. The
working days will subsequently be the period which will decide the size of the
storage. In January, 336/(24-8) equalling 21 working days are present and there
is therefore 21 x 8 or 168 hours available under this month for storing heat,
while 336 hours could be used for the discharge. The model must include this
fact and the expression is:

336 x HSH; — 168 x HSL; =0 (32)

where HSH; = the heat flow in MW in January, high price periods and
HSL; = the heat flow in MW in January for low price periods. It is assumed
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that it is the electric load that is to be decreased by use of the storage and the
equations 2 and 3 must be completed with the following expressions in their left
sides respectively:

+HSH, x 336 (33)

—HSL; x 168 (34)

The model must also include a statement showing the maximum energy
storage in any month:

—HSL; x 168+ HSMAX >0 (35)

where HSM AX = the maximum energy storage in MWh for any month.
Equation 8 is affected and the HSH; variable must be added to the left side of
that statement. The objective function must include the cost for the storage,
ie. HSMAX x 150 000 x10~% expressed in MSEK. This expression completes
the model which now contains 220 variables and 211 constraints. Optimizing
the model shows that not a single retrofit action in order to conserve electricity
or heat is profitable. Neither is it profitable to produce more electricity in a new
gas-turbine nor the heat storage is chosen. The optimization did result in the
same strategy as shown in Table 7. However, it is possible to slightly change the
model in order to force it to choose e.g. the attic floor insulation retrofit. This
could be done by deleting the < - sign in expression 22 which means that one
of the A - variables must be set to 1. Optimizing this new situation shows that
the value of the objective function is increased by about 747 MSEK, from 11
877 to 12 625, and the smallest amount of extra insulation is used, or 0.05 m. In
Ref. [15] a closer examination has been made for different costs for the insulation
and it is shown that the cost must be decreased with about 80 % before the
insulation will be profitable and part of an optimal solution. It must be noted
that the assumption of the original U-value was rather low, 0.5 W/m?xK which
means that profitable extra insulation is very hard to achieve. A higher U-value
in the original building, say 1.0 W/m?xK probably would have changed the
situation. The same reason is valid for exchanging the windows, the U- value
is only changed from 2.5 to 2.0 W/m?xK and the savings from this cannot
compete with the cost for the exchange. There is also a possibility to change
the heating system in an existing building in order to get a lower LCC. In this
case, however, the district heated building is heated with waste heat form the
electricity production, garbage, industrial waste heat etc. which means that the
heat has a very low cost compared to the competing heating systems available.
Electricity savings are much more profitable. Deleting the < sign in equation 30
forces the model to choose extra insulation and the optimal situation is to set
D5 = 1 which means that 0.1 metre of extra insulation is to be implemented.
The value of the objective function will now increase with 49 MSEK which
is much less compared to district heating conservation by use of additional
insulation. If the demand charges in the electricity rate are increased, this will
imply that the gas turbine, the heat storage and the conservation retrofits will
become more profitable. The demand charge must, however, be increased to
about 700 SEK/kW, compared to 270, before the gas turbine will be profitable.
The conservation measures will not emerge as optimal before the cost for the
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gas turbine exceeds 4 200 SEK/kW. Some experiments with the model show
that the heat storage will be optimal if the cost for it is decreased with about
90 %. If the electricity tariff is increased it will lead to an increased production
in the CHP plant and further using the gas-turbine, before the implementation
of the heat storage will be optimal.

CONCLUSIONS

The paper shows that it is possible to build a mathematical model of a munic-
ipality energy system including both new and existing production units, CHP
plants, district heating equipment and gas-turbines, as well as energy conser-
vation measures such as attic floor insulation, exchanging windows and heat
storages . The model is designed as a mixed-integer program and thus it con-
tains linear expressions using ordinary as well as binary variables. The binary
variables are used for solving originally nonlinear expressions. When the model
is optimized it is revealed that with the prices for heat, electricity, operating
equipment and energy conservation measures valid in Sweden today, none of the
energy conservation measures tested in the model, was found to be optimal to
implement. Instead it was better to produce more heat or produce more elec-
tricity in the existing plants. If the need could not be covered, purchase from
the market was likwise optimal.
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