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Stability problems in optimised chairs?

S.-l. Gustafsson

Summary Chairs and other furniture are seldom designed by help of structural
mechanics and modern computers. Even if the designer uses a sophisticated CAD
program, he, or she, will not use for example, finite element programs, FEM, in order to
optimise the construction. Most furniture is made of wood or wood composites.
Usually, structural mechanics is used for designing wood members in roof construc-
tions and so forth. Because of the consequences of a breakdown, the allowable design
stresses must be very low, about one third of the measured breaking strength. Smaller
wood details could be chosen with more care and for chairs the result of a break would
not necessarily lead to a disaster. However, a lot of the knowledge about how to design
small wood structures emanates from the pre-war aeroplane industry. The difference
between tensile and compression strength properties in wood also makes ordinary FEM
programs hazardous to use because the background theory assumes that these
properties are equal in magnitude. In this paper we show how to calculate the internal
stresses of an undetermined chair frame and also show some material test results for
Swedish alder, Alnus glutinosa.

Introduction

Strength design of furniture seems to interest only a few researchers in the world at least
if one looks at the number of papers published during recent years. Wang et al. 1994,
have examined the strength of furniture joints between structural members of
laminated veneer lumber. This is a very important field to investigate because the joints
seems to be the weakest point in various types of furniture. The work of Eckelman, 1966,
which seems to be one of the first attempts to interest a wider population of researchers
for furniture and strength design, shows calculated moments at the joints in an
indeterminate frame of a chair. However, he did not show at all how he fulfilled the
calculations. Corner joints in cabinets have interested the authors Cai and Wang,
1993, and they used FEM calculations to calculate the stiffness for such joints between
members of particle board. Papers about cabinets and other furniture has also been
written in Poland, Smardzewski et al. 1993. The, for us, most interesting paper about
FEM calculations and chairs, however, seems only to be available in Polish. They have
also written several other papers, in German, about joints and adhesives. In Gustafsson,
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1995, we have shown how to calculate the internal stresses in an indeterminate chair
frame by use of the so called displacement method. Further, experiments with this
method by use of a computer are presented and the result showed that the stretcher was
to be placed diagonally between the lowest part of the back rail to the highest part of the
front member, see Fig. 1.

The calculations for the frame in Fig. 1 were made by a computer program, P-FRAME
from Chalmers University of Technology, and they showed that the moments in the
upper and lower part of the diagonally stretcher were very small, only about 20 Nm.
However, they also showed that axial forces were introduced which were only of minor
interest in Gustafsson, 1995, but must be considered if the stretcher were made thinner.
The axial forces would eventually make the stretcher collapse due to one of the Euler
cases. This paper is therefore dedicated to such an investigation.

Case study
Consider the chair in Fig. 1. For a start, assume that all the wooden members have the
same cross sectional areas and are made of the same material, i.e. they have the same
Young’s Moduli, E, and moment of inertia, I. In order to calculate the stresses in the
members we use the displacement method which can be studied in detail in Asplund,
1966. First we must elaborate the stiffness matrix. Here, we will only show the method
for the first line in this matrix but the other lines are accomplished in the same way. In
Fig. 2, to the left, we have simplified the frame as much as possible while in the right part
have introduced a rotation in the upper left corner of the frame.

Because of the diagonal stretcher the frame could not have a transverse displacement,
i.e. in first order theory. The joints could only rotate. Asplund now tells us that the
stiffness matrix elements, made up of elementary cases, equal:

e =4 EI/L+4 EI/(L-2%°) =6.83 EI/L
e; =2 EI/L
e =2 EI/(L-2%%)=1.41 EI/L

The total stiffness matrix and the equation system to be solved is therefore:

6.83 2 1.4l Q 0
2 8 2 |-|q|=|P
141 2 6.83 95 0
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Fig. 1. Chair with a diagonally placed stretcher for minimising
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Fig. 2. Simplified frame, to the left, and rotated corner for stiffness matrix elaboration, to the
right

Fig. 3. Positive signs for moments, translations and rotations

Solving this results in q, = —0.0345, q,=0.1423 and q,= —0.0345 PL*/EL The elements
of the frame must after this be separated in beams. The convention for positive signs of
moments and rotations is shown in Fig. 3.

The moments must therefore be calculated as, note that we have neglected trans-
lations, t, because of first order theory:

M,,=4-0.0345 - (PL¥EI) - (EI/L) —2-0.1423 - (PL¥/EI) - (EI/L) =—0.1466 PL
M,,=2-0.0345 - (PL%EI) - (EI/L) —4-0.1423 - (PL*/EI) - (EI/L) =—0.5002 PL
M,;=4-0.1423 - (PL¥EI) - (EI/L) —2-0.0345 - (PL*/EI) - (EI/L) =+0.5002 PL
M,,=2-0.1423 - (PL¥EI) - (EI/L) —4-0.0345 - (PL*/EI) - (EI/L) =—0.1466 PL
M,, =—4-0.0345.2~%. (PL%EI) - (EI/L) —2-0.0345 -2~ %+ (PL%EI) - (EI/L)
=—0.1466 PL
M, =—2-0.0345-2%°. (PL¥EI)- (EI/L) —4-0.0345 - 2% (PL*/EI) - (EI/L)
=—0.1466 PL
Assuming that P equals 300 N and L equals 0.4 m, as in Gustafsson, 1995, implies that:
M,,=17.59 Nm (tension below) M,, =60.0 Nm (tension above)
M,;=60.0 Nm (tension inside) M;,=17.59 Nm (tension outside)
M;,=17.59 Nm (tension outside) M,;;=17.59 Nm (tension inside)

It is obvious that the stretcher could be much thinner than the seat and back rails
because the moments in the stretcher is only one third of the moments at the other
frame joints. As mentioned above, we have also introduced axial forces in the frame and
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this could lead to stability problems. Up to now we have neglected these forces but this
does not mean they are zero. Using equations of static equilibrium for each separated
beam, see Fig. 3, and joint, makes it possible to calculate the shear forces T and hence
the axial forces, N. The axial force in the stretcher is by use of these facts calculated to
449 N, compressed, the force in the horizontal beam is 230 N, tensed, while the vertical
beam is compressed by a force of 194 N. The question is now if the stretcher is in the
vicinity to collapse because of the moments and the axial force. To start with we could
compare the axial forces to the critical ones from an Euler IV case which are calculated
as:

P =4-m-E-I/L2

We see that it is necessary to find values for E and I if we are to calculate the critical
force. I is possible to calculate but E depends on the material. In e.g. Tsoumis, 1991,
page 164, values for E could be found. The author shows the value for the modulus of
elasticity, MOE, which is calculated from bending tests. Tensile or compression moduli,
however, cannot be found. Therefore, we have made some small tests on alder ourselves.
In Fig. 4 a tensile test is shown.

From Fig. 4 it is shown that the relationship between stress and strain follows an
almost perfect straight line. The stress obtained at break was 91.1 MPa and the strain
was 0.86%. The E modulus is therefore calculated to 10,593 MPa. The breaking strength
for European alder is 92 MPa according to Tsoumis, 1991, which corresponds almost
perfectly with the value in Fig. 4. In Gustafsson, 1996, the same type of diagram is
published for Swedish birch, Betula. Birch wood is much stronger than alder, the stress
obtained before breakage was higher than 160 MPa. Alder also seems to have another
behaviour when tensed than birch because we could not observe that some fibres broke
and other took over the load as was found for birch. Instead the alder wood in Fig.
4 seemed to endure the load to a specific point and after this a total collapse occurred.
Some other tests did not show this as clear as above but the main difference in
behaviour between alder and birch seems to be valid.

We have also made compression tests, see Fig. 5. The breaking strength for alder
under compression parallel to the grain was about 58 MPa, see Fig. 5, or about half the
value found for tension. The value corresponds well to the one found in Tsoumis, 1991,
which is 54 MPa. The E-modulus calculated from the middle part of the curve in Fig.
5 becomes approximately 2,900 MPa or about one third of the one found for tension.
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Fig. 4. Tensile test for Swedish alder,
Alnus glutinosa
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Fig. 5. Compression test of Swedish alder,
0 . : Alnus glutinosa
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Inserting L=2%°-0.4=0.56 m, E=2,900 MPa, [=0.01-0.03*/12=2.25-10"* m*
yields that P_;, equals 8,050 N which is far from the axial load calculated above. There is
therefore no danger for a collapse in the same plane as the frame. The rod is weaker in
the direction perpendicular to the frame which implies that an I1=0.03-0.01°/12=
2.5-107? should be used instead. P_;, will then decrease to 894 N. The actual load is still
about two times lower and therefore no risk seems to be apparent.

Therefore, let us make the stretcher much thinner, for example 0.005 times 0.02 m.
We must start the calculations all over again and elaborate a new stiffness matrix. The
inertia moment, I, will now become 3.33-107° m* in the plane of the frame, which is
about 6.75 times lower than before. The first three elements of the stiffness matrix will
therefore change to:

e;; =4 EI/L+4 EI/(6.75-2%°- L) =4.419 EI/L,
e, =2 EI/L
e;; =2 EI/6.75.2%°.1L.=0.210 EI/L,

It is not possible to show the total calculation process but the resulting rotations are
q, =q;=0.0689 PL*/EI, q,=0.1594 PL¥/EL Note that the first and last rotation is about
twice as large as before, while g, did not change very much. The moments become:

M,,=5.19 Nm (tension below) M,,=60.0 Nm (tension above)
M,;=60.0 Nm (tension inside) M;,=5.19 Nm (tension outside)
M,;,=5.19 Nm (tension outside) ~M,;;=5.19 Nm (tension inside)

Using equations for static equilibrium for each joint shows that the axial force in the
stretcher will not change at all, the force is still 449 N. The critical Euler IV force will
now become 1,200 N which is about three times higher than the actual load. Stability
problems, however, arise when bending perpendicular to the frame plane is considered.
The critical force will now become only 75 N, which is lower than calculated above.
Therefore, the stretcher will probably collapse due to the axial force and it will bend
perpendicular to the plane of the frame.

Using the Euler IV case as shown above is not quite accurate according to the theory
of structural mechanics. The stretcher is influenced by the moment in each end. This
implies that the stiffness matrix must be elaborated by use of so called Berry functions,
see Asplund, 1966, page 267. These functions change the stiffness elements according to
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a calculated value o =P/Pyyy;, i.e. the actual load divided by the Euler II critical load,
which in our case equals:

o =449-(0.4-2°)*/n*-2,900-10°-1.33-10 *=0.38

The stiffness 4 EI/L must now be changed to 3.473 EI/L while the value 2EI/L becomes
2.141 EI/L for the beam under consideration. The total stiffness matrix will therefore
change to:

6.45 2 1.52
2 8 2
1.52 2 6.45

A stability problem now occurs only if the determinant of the matrix is negative or
equals zero. In our case this is not the fact because this value is calculated to 275 which
is well on the safe side. When the thinner stretcher is introduced the stiffness matrix will
change to:

543 2 2.04
2 8 2
204 2 543

which has a determinant of 175, which is lower than before but also on the safe side.
Using Berry functions therefore confirms that no stability problem occurs for the
stretcher under consideration, at least as long as only bending into the plane is dealt
with.

Even if the risk for collapse perpendicular to the frame is evident, because of the axial
forces, it is interesting to study the stress at different points of the frame. The maximum
moment occurs at the back rail above the seat, i.e. 120 Nm. By use of classic theory the
stress could be approximated with 6=+M-z/I or in our case +120-0.015/2.25-10"°
equalling 80 MPa. The stretcher is exposed to an axial force of 449 N, which results in
a stress of 4.5 MPa and a moment of 5.19 Nm resulting in 15.6 MPa or a total stress of
about 20 MPa if the thin stretcher is chosen. Tsoumis, 1991, page 164 the modulus of
rupture in bending for European alder is set to 83 MPa, i.e. slightly stronger than the
calculated stress. The compression strength is lower than the calculated stress. It
therefore seems necessary to reduce the moment in the back rail and at the same time
change the cross sectional area of the stretcher if the wooden material should be utilised
to maximum values. If a stretcher is introduced from the top of the back rail to the front
of the seat the dangerous moment should be reduced, see Fig. 6.

The chair in Fig. 6 is probably not very practical but is used here for academic
reasons. In real life the top stretcher could be made of cord instead of massive wood
because it will be exposed almost only for tension axial forces. Another way is to build
a new frame above the seat which could be used as a place to rest your arms. Unfortun-
ately, the structure in Fig. 6 cannot be analysed without considering the axial
deformation of the stretcher between point 1 and 4. The stretcher is, however, a very
thin element and therefore it cannot endure large moments. It is therefore satisfactory
to assume that the moment in point 4 equals zero and hence it is possible to calculate
the axial force in the stretcher to 424 N which in turn implies a prolongation of less than
0.001 m. Further, assuming that the top of the back rail deflects this amount results in
a moment in the back rail at point 2 of only about 1 Nm. Computer calculations show
that the moment is even closer to zero. In real life, the burden a chair must endure does
not correspond with the loads assumed in this paper. Real truss chairs therefore do not
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Fig. 6. Chair with two stretchers for minimising the moment in
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seem to be recommendable but if the structure could get closer to a truss, much smaller
members could be chosen.

Condlusions

If the structure of a chair could be changed to a truss or a bar structure only axial forces
are of interest. Some of the bars will become compressed and therefore stability
problems will occur when the wooden material shall be utilised to the brink of collapse.
Some of the structural members will only be tensed which means that very thin
dimensions could be used because of the high strength of tensed wood parallel to the
fibres. When the cross sectional areas of the wooden members get smaller more interest
must be paid to the different loads actually implemented on the structure. One example
is to study how the load is distributed on the back and seat of the chair. The beam under
the seat must of course carry a distributed load which will imply rotations in the ends of
the member. Because of firm joining between the parts in the chair, moments will be
introduced in other parts of the structure as well. Hence, the truss model cannot be used
without great care when real chairs are to be designed.
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