119

9. OPTIMIZATION TECHNIQUE

Considering the model, as it is shown in (F40) and (F41), it
is nonlinear in the expressions for the insulation parts,

i e attic floor, external walls and the floor. The rest of
the model is an integer problem, where the variables H, Y
and X only can have binary values 0 or 1. Further, all of
the constants only contain the binary variables and if the
insulation expressions could be transformed to linear
expressions the model could be solved using a mixed integer
programming method. As is shown in (7 p 315) a nonlinear
function can be piecewise linearized. The nonlinear function
will then transform to an expression like: f(a) x A1 + f(b) «x
X a2 + f(c) x A3 .....

The function values f(a), f(b) .... etc has to be calculated
from the nonlinear function for the values a, b ..... The
first part of the model will then look like Hy(Yj(A x A 4+

B x 22 + C x 23..... ), where A, B and C etc are constants,
and X1, A2 are normalized to one or zero. However, a linear
program, LP, cannot solve expressions like Y; x A «x A1 because
Y] and Aqare variables that are multiplied with each other.
This is so even in this case, where Y; and A; are binary
variables and only can have the values 0 or 1. In (7 p 470)
one method is mentioned to transform the Hy x Y] expression
to a linear expression in the case both the variables is
binary.

Solving integer problems is possible using the branch-and-
-bound method discussed in (7 p 472) or in (32 p 150). This
is done by first solving a continuous L® problem that can be
exactly solved, e g by the simplex method. After this sol-
ution is reached a new LP problem is constructed using the
solution from the first one. Examining all of these new sol-
utions to the constructed LP problems it is obvious that a
lot of those will have higher objective function values and
thus can be excluded, and the integer problem is solved
after some iterations.

However, this is a rather cumbersome method solving my own
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problem. In fact, looking at the process calculating all the
constants to the final problem, piecewise linearization etc
makes this a very unwieldy method. It is obvious that it is
easier to start the optimization when the constants are
calculated exactly as is done in the Chapter 4. The main
work is to calculate the constants and when this is done it
is easy to compare these and see which has the lowest value.
My method to solve the problem is therefore to calculate the
total LCC for the existing house as is shown in Chapter
4.1.6.2.2. After this is done I introduce one of the retro-
fit measures and calculate the new LCC for the house. If
this new LCC is lower the measure is chosen by the program
if not, the original LCC still is the best one. A1l the
envelope retrofit measures are tested in this wav and the
total optimal strategy thus can be chosen. After this is
done a new heating equipment is chosen and all the envelope
retrofits are tested and so on. Of course, there has to be
an immence amount of calculating, but by the use of modern
computers, in my case a NORD 570 machine, the process only
takes about 30 seconds. Then 8 envelope retrofits and 7
heating systems are tested. It is obvious that the integer
programming method described above will be a more cumbersome
method. The process I have chosen can be depicted as shown
in Figure 26.
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N = Heating equipment
M = Retrofit
Existing house N=N+1
LCC (M,N) M=
M=M-1 < P M=M-1
r:u
Test a retrofit? > Test a new heating
equipment
No
M=Mary YES +No
Terminate. A
Calculate Choose the lowest
LCC (M, N) Lee
A
Y
REgRCE Lk LCC (M, N) < LCC (1 - 1, N) |~ Choose the retrofit
retrofit 3 ’ ’ —
No Yes h

Figure 26. Optimization technique.

Before showing some results from my calculations I will
discuss the use of differential rates for energy.
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6 . DIFFERENTIAL RATES FOR ENERGY

During the latest years a new type of rate for energy has
been introduced from the power companies. As mentioned before
both the electrical and the district heating energy cost thus
varies during the year. The introduction of these type of
rates have been made because they, better than the other
types, reflect the real cost for producing the energy. In the
winter, when there is a great demand for energy, the power
company mavbe uses gas turbines "on the top" of the producing
system to cover the demand. During the summer the need for
heating is very small and this means that only the Cheapest
producing facilities are used. Maybe the demand can be
covered by redundant water in the hydro electrical power
plants. The cost for producing an extra unit in this case
almost is zero, while in the winter time the cost can be

0.5 SEK/kWh or more. In (70 p 5 - ) this is explained more in
detail and a background is given to the use of differential
rates and the short range marginal cost theories. The perfect
differential rate sha'l reflect the producers cost for the
latest energy unit produced. However, this cost is hard to
transfer to the consumers, who shall decide if more or less
energy shall be consumed. Some efforts have been made to
build such equipment, but these are not in common use. The
power companies, thus, have introduced the next best differen-
tial rate, the time of use rate, where the consumer is in-
informed of the energy cost by the time of the year and the
hour of the day.

The electrical rates for Malmé for our energy demand is

8 400 SEK in annual and an energy price of 0.345 SEK/kWh
during November - March, Mondav to Friday 06.00 - 22.00 and
0.16 SEK/kWh during other periods. To these prices the energy
taxes 0.072 SEK/kWh shall be added. (71).

For district heating the prices are shown in Chapter
A:.1.6.3.2=

It is easier to calculate the LCC for the district heating
because the time-of-use rate has a different price depending
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on the month and there is a possibility to use the monthly
mean temperatures shown in Table II.

The electrical rate differs also during the day, which means
that it is necessary to examine the climate, not only for the
different months but also the variation during the day. Thus,
these types of electrical rates have to be excluded from this
thesis and are left for future research.
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7. THE INFLUENCE OF THERMAL CAPACITIES IN THE BUILDING

Using the LUT-concept, earlier discussed, makes it possible
to calculate the demand of power in the house, because of the
proposed lowest possible outside temperature. In (89) the
background to the LUT concept is discussed and some calcula-
tions are made for different climate periods con-cerning the
time constant in a building. In our case the temperature
chosen was LUT 1 = -156 OC. If my building could be considered
as heavy, LUT 5 could be used, and -12 OC then is proposed.
When retrofitting a building, i e putting more insulation to
the walls, better windows or making the ventilation svstem
not so energy consuming, of course, the influence of very
short periods, with low outside temperatures deminutes. In
this thesis I will only give a brief view of this problem of
finding the "thermal answers" from the inside climate, when
fluctuating the outside temperature.

In (26 p 107 - ) there is some analytical solutions for some
simple cases. Assuming a single-lump heat capacity, where
the temperature in the lump is considered the same through
the lump, the temperature can be calculated as:

T-Te -(hxA/pxcxVg) Xt
—_—=c e (F44)
To-T‘”

where Te = The surrounding temperature

To = The temperature
when the time =0

Vo = The volume of the lump whith the density and
the heat capacity = ¢ and

T = The time

when © = pxcxV/(hxA) the expression (44) will become T -
- T =Tg-T el =7T5-7T x 0.3679.

p x c x Vog/h x A is called the time constant because it has
the dimension time. However, the conditions in a building
are not very similar to a lump, and the author also shows a
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solution for a two lumped system, when the walls could be
considered as one lump and the air inside the building
another. Unfortunately, the air has a very low thermal
conductivity and the temperature throughout the lump will
differ a lot. The assumption that the air is a lump will thus
not work very well.

Using the method in (26 p 110 "one lump method") it can be
found that:

T-To '(X(UXA)"VXCpa)/NDXCpb))XT
—_— = (F45)
Ti-To
mbXCpb
and the time constant =
Z(UXA)+\’XCpa
Here T = The temperature in the building at the
time
Tj = The starting inside temperature
To = The outside temperature
LUxA = The sum of all U-values multiplied with
the corresponding area
v = The mass flow of ventilation air in kg/h
Cpa = Heat capacity for air in Wh/kg K
mp = The mass of the building
Cpb = Heat capacity of the building

In (73 p 26) the process is explained more elaborate.

It shall also be noted that this solution also considers a
transient increase/decrease in the temperature, which never
happens in reality. Using (45) will thus probably not give
very accurate results.

In (73 p 27 - ) the author uses a mathematical model, where
also the heating equipment is considered, however, with the
lumped capacity concept. In (74) several models are
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discussed using data from real houses. The time constants
have been calculated from temperature measurements in the
houses. Unfortunately, only single-family houses have been
examined. The estimated time constants in these varied
from approximate 100 to 200 hours.

There have also been calculations about using the building
construction to store heat. The climate from a test year with
temperature measurements every hour has been used to compute
if the mass in the construction has any influence on the
energy demand in the building. No retrofit measures, however,
are discussed (75). In (83) the effect of the thermal mass
influence is calculated to 1 - 3 % of the total! annual heat
demand. |

In (76) a rather thorough discussion is made about the time
constant subject. Some measurements from real buildings are
a'so mentioned. The constants varied from 30 - 100 hours.
Further, there are several theoretical solutions to the
differential equations that solves the assumed model of a
building. Another report concerning this subject is (77)
dealing with heat losses to the earth under the house. In my
thesis it is out of the scope to solve such equations and,
furthermore, there are so many assumings made that differs
from the reality that the results probably will be inaccur-
ate. In (90 p 216) a slightly different method is used. The
model consists this case of a slab of material that has one
of the sides adiabatic and the other in a fluid. In (92) the
author deals with the model in a mathematical way.

The subject is also treated in (95).

However, the consideration of the time constant of the
building makes it possible to calculate with a higher "lowest
outside temperature”. In (78) the Dimensioning Outside
Temperature for a light building in Malmé can be calculated,
according to the National Board of Planning and Building.
Unfortunately, this is only valid for single family houses.
However, the DOT can differ up to approximately 10 OC with
this method. Assuming this is relevant also for multi-family
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buildings, the LUT 1 used in Chapter 4.1.6 could be changed
to -6 OC for a highly insulated building with ventilation
retrofit. Using this temperature on the attic floor retrofit
with the existent 0il boiler in Chapter 4.1.6.1.3 the power
cost expression changes from 729/(0.04 + 0.8 x taf) to
527/(0.04 + 0.8 x taf), which, however, can be neglected when
calculating the optimal insulation thickness.

For other heating equipment with high "power costs", e g the
heat pump in Chapter 4.1.6.4.3, the influence of a lower
outside temperature will change the expression from 8 988/
/(0.04 + 0.8 x taf) to 6 491/(0.04 + 0.8 «x taf).

0.04 V 12 224 7

The taf = -— +
0.8

= - 0.050 + 0.226 = 0.176 m
300 000x0.8

The LCC becomes 1 137 365 or approximately 25 000 SEX
cheaper than the earlier calculation in Chapter 4.1.6.4.2.
It is obvious that in some cases there can be a different
retrofit strategy considering the heat capacity and time
constant of the house, but mostly the strategy will not
change because of this.

As mentioned ahove I have changed the optimization technique
a little in order to find the true optimal retrofit strategy.
Using the model I have developed, it is easy to change some
of the input data for the building or the boundary condit-
ions, and I will thus in the last chapter of this thesis give
examples from some of these sensitivity calculations and case
studies.



