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Abstract

When a building is subject for refurbishment it is important to add only such measures that will reduce the Life Cycle Cost (LCC), for the
building. Even better is to add measures that will, not only reduce the cost, but minimise the LCC. One means for such an optimisation is to
use the so called Linear Programming (LP), technique. One drawback with LP models is that they must be entirely linear and therefore two
variables cannot be, for example, multiplied with each other. The costs for building retrofits are, however, not very often linear but instead
‘steps’ are present in their cost functions. This calamity can, at least to a part, be solved by introducing binary integers, i.e., variables that only
can assume 2 values, O or 1. In this paper it is described how to design such a Mixed Integer Linear Programming (MILP), model of abuilding

and how different cost elements of the climate shield influence the optimal solution.

© 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

In recent years linear programming (LP) and mixed inte-
ger linear programming (MILP) have found increased inter-
est among researchers in applied engineering. The reason for
this is partly due to the introduction of fast personal computers
on everyone’s desk. Problems that took hours or even days
to solve can, nowadays, be solved in minutes or even seconds.
Itis therefore possible to design models with several thousand
variables without having to wait for hours to see the optimal
result. This is especially valid for MILP problems because
the so-called branch and bound method must solve two LP
problems for each integer that is introduced. The model is
initially optimised by assuming that no variables are integers.
When this is done, the problem is split into two LP problems:
one problem where one of the integers is bound to a value
less than or equal to zero, and another problem where the
integer is set to a value greater or equal to 1. An MILP
problem therefore needs substantially more time to be solved
compared to an ordinary LP.

There are numerous papers about LP and MILP program-
ming in scientific journals, see e.g., Refs. [ 1-5]. Papers about
MILP and buildings, however, are not very common but some
have been presented in recent years, see e.g., Refs. [6,7].

* Corresponding author. Tel.: +46 13 281156; fax: +46 13 281788;
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2. The MILP model

All LP and MILP problems have a mathematical expres-
sion called the objective function. In our case, this function
shows the total LCC for the building and the expression is,
therefore, to be minimised. One way to achieve this is to set
all variables to zero but if such is the case, no heating or
building activity is present. A number of constraints must
therefore be introduced. One constraint, for example, ascer-
tains that enough heat is supplied to the building while others
are used for finding proper thermal sizes of different heating
equipment, which can be possibly installed in the building.
In Ref. [7], the method is shown in detail for heating equip-
ment and insulation measures.

The need for space heating in a building depends on the
climate. It is not possible or at least very impractical to use
the outdoor temperature in every moment and from this, cal-
culate the energy cost for a long period of time. Therefore,
there is need for splitting 1 year into several segments and
use monthly mean temperatures as a base for the calculations.
In Sweden, the electricity rates sometimes make it profitable
to use heat pumps for space and hot water heating. The elec-
tricity rate is high during the winter and low at summer. The
price also differs according to the time of day. Weekend rates
are also low in some months. Hence, we found it practical to
divide the year into 22 segments where the months Novem-
ber-March are split into three segments each, while each
month from April to October are alloted into one segment
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each. The need for space and domestic hot water heating is
presented in Fig. 1.

In January, the first segment includes 368 h where the
electricity rate is high. The total amount of energy in this
segment has been calculated to 16,697 kWh and the demand
4s 45.37 kW (see Ref. [8] for details). The need for heat
must be covered by district heating, a heat pump, an oil-fired
boiler or a mix of these systems. The thermal sizes of these
heat sources are not known so three variables, Ppyo1, Prpors
and Pgopo,, are introduced. The index 01 shows that the first
segment is considered. The cost for district heat in Linkoping,
Sweden, is 0.26 SKr/kWh, the running cost for the oil-fired
boiler is 0.39 SKr/kWh, while the electricity cost is 1.01
SKr/k Wh in this high-cost segment (1 US$ =7 SKr). Each
system has an efficiency which is set to 0.95 for district
heating, 0.75 for the oil boiler and 3.0 for the heat pump. It
is assumed that the system is used during the next 50 years
and that the real discount rate is 5%, which leads to a present
value factor of 18.26. The first small part of the objective
function can now be elaborated:

[0.26X(1/0.95)X Ppgzo; +0.39%X(1/0.75)X Pogor 1)

+1.01X(1/3.0)X Pypo; 1X368X18.26
The other 21 segments are added in a similar way. The

equipment must also be installed and purchased. Itis assumed
that the different systems costs are:

40,000+ 60 X Ppy For district heating
55,000+ 60 X Pog For the oil boiler
60,000+ 5000 X Pyp For the heat pump

The costs, however, must also be calculated as present
values. The practice life for the district heating system is
assumed to be 25 years while the oil boiler and the heat pump
is thought to be 15 years. Further, assuming a total project
life of 50 years and a real discount rate of 5%, the present
value for the district heating system will become:

(40,0004 60X Ppy )X (1+(140.05)%%)
=51,812+77.72X Ppy (2)

Note that Ppy, etc., are now presented without indices and
therefore shows the maximum thermal size of the equipment.
So, the model must include expressions for finding the max-
imum need for, e.g., district heat in all the 22 segments. This
is implemented through the use of 22 constraints for each
heating device, and one is shown here:

As can be seen above, the cost for the district heating
equipment starts with a step, i.e., 40,000 SKr. This cost must
be present in the objective function but only if the district
heating is optimal to use. This behaviour is achieved by
implementing a binary variable A,, which only can assume
the values of O or 1, and by introducing one more constraint:

Thermal
demand [kW]
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Fig. 1. Thermal demand for the studied building, [8].

M is set to a value higher than Ppy might ever take, e.g.
200. Note that the maximum demand is about 72 kW in
Fig. 1. If Ppy has a value greater than zero, A, must be equal
to 1. A; must also be present in the objective function and
then multiplied by the cost 51,812 SKr. Because of the min-
imisation, A, becomes 0 if Py =0 as well. This part of the
objective function therefore becomes:
A;X51,812+77. 72X Ppy+A 2X56,260+61.33 (5)
X Pop+A3X105,933+8827X Pyp

A sufficient amount of heat must be supplied to the build-
ing. In the first time segment, this amount has been calculated
to 16,697 kWh. By using 22 constraints, of which the firstis:

this is achieved.

It is also possible to affect the energy need in the building
by applying extra insulation and better windows. The method
used for extra insulation is partly presented in Ref. [9] and
is therefore only described briefly here. The new U-value for
an extra insulated wall can be calculated as:

Unew=knewXUgx1/(knpw +UgxiXt) (7

where kngw is the conductivity for the new insulation in W/
m? °C, Ugy; is the existing U-value in W/m °C, and ¢, the
thickness of the added insulation in metres. Unfortunately,
Eq. (7) is not linear and thus, the so-called stepwise linear-
isation must be used. A number of binary integers (11 vari-
ables were used in our case) must be introduced. The first
integer, IS, is applied for 0.02 m of extra insulation, the
second one for 0.04 m and so on. Only one of the integers
can be 1 while the others must be 0. If all integers are 0, it is
not optimal to add insulation at all, see constraint (8).

IS +1S;+1S, +1S; +--+1S o<1 (8)

After this, the integers IS are coupled to the cost for extra
insulation and are added to the objective function. By Eq.
(7), they are also coupled to the decrease of energy demand
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in the building and are added to expression (5). Insulation is
useless outside of the heating season. An energy balance for
the building shows that four segments, (viz. 11-14) only
need energy for domestic hot water heating. The IS variables
are, therefore, not present for those segments.

The same procedure is valid for windows but here, the
different window constructions are coupled to a set of binary
integers. The model must deal with insulation measures for
the attic, the floor and the walls, which can be insulated both
on the outside and on the inside of the house. Three types of
window retrofits are dealt with: triple-glazed windows, win-
dows with low emissivity coatings and gas filled windows.
Four different orientations (north, east, south and west) are
also present. So, there are about 75 binary integers present in
the model.

One very important factor to deal with is the current state
of existing windows or the facade of the building. If the
windows for example, are affected by rot they must be
changed immediately to new ones while the remaining life
of existing windows is set to null. If this is not the case, they
have a salvage value which must be considered. This is dealt
with by the use of a so-called unavoidable, or inevitable
retrofit cost. In our case study, 27 windows are oriented to
the east. Each window has an area of 2.8 m” and the cost for
a new window of the same type in current costs is assumed
to be 1100 SKr/m?. If no measures are made for thermal
reasons, 83,160 SKr must be invested in order to change the
poor existing windows to new ones of the same type. Assume
that new windows last 30 years before they have to be
changed again. A present value calculation for 50 years and
a 5% discount rate shows:

83,160+83,160X(1+0.05)*° —(83,160/3)X(14+0.05)>°
=99,984 SKr

If original windows are in perfect condition, no investment
will have to be made for 30 years and the expression would
have looked like:

83,160X(1+0.05) 3 —(83,160/3)x(1+0.05)~>°
=16,824 SKr

If triple-glazed windows (cost: 1300 SKr/m?) are
installed at year 0, the present value becomes 118,162 SKr.
In the first case with poor windows, the better thermal behav-
iour must save 18,178 SKr before triple-glazed windows are
profitable while they have to save 101,338 SKr if the original
windows are in perfect shape. The same procedure must be
considered for all the building measures in the model.
Table 1 shows the inevitable costs for the building if no
thermal improvement is made and for cases where better
windows and added insulation are applied.

To the unavoidable cost above, the actual cost for the
retrofit must be added which, in turn, depends on what solu-
tion is optimal. If none of the ‘thermal’ retrofits are optimal,
407,632 SKr must be added to the objective function. If triple-
glazed, east-oriented windowst are optimal, then the una-

Table 1
Unavoidable or inevitable retrofit costs (SKr) for the building

Measure Cost (SKr)
No retrofit 407,632
Attic floor insulation 407,632
Floor insulation 407,632
External wall insulation, outside 222.832
External wall insulation, inside 376,832
Windows
North 407,632
East 307,648
South 407,638
West 315,584

voidable cost is 307,648 SKr while new windows cost
118,162 SKr or a total cost of 425,810 SKr. This sum must,
therefore, be compared with the unavoidable cost when no
retrofits at all are present and the difference, i.e., 18,178 SK,
which is coupled to a binary variable and added to the objec-
tive function. The model must therefore include a new set of
constraints where the first sets the unavoidable cost if no
retrofits are optimal:

ISo+IS,++++IS;10+Foo+Fop++-+Fp3+NOR=1  (9)

The binary integers Foo to F3 shows that window retrofits
are optimal if the values equal 1. If all the IS and F integers
equal 0, NOR (for no retrofit) must be 1 and this binary
integer is then coupled with the cost 407,632 SKr above and
inserted in the objective function. The second constraint adds
the same value if one of the retrofits are chosen:

ISO+ISI+"'+Islo+F00+F01+'"+F23+MXR_ZM+1
(10)

M is set here to a value higher than the possible sum of all
retrofit integers, in our case 200. If one or more retrofits are
optimal, R (for retrofit) must be 1 and the R variable is
coupled to the unavoidable cost and inserted in the objective
function. This awkward way is needed because it is not pos-
sible to add just a value to the objective function. The una-
voidable cost is needed here in order to achieve the accurate
LCC but it does not affect the optimal solution. The next four
constraints are needed because it should not be possible to
add both triple-glazed windows and windows with better
thermal performance in the same orientation at the same time.
One constraint is:

FootFiot+Fy<l (11)

The first figure in the index 00 shows that it is triple-glazed
windows while the second figure shows the orientation where
0 means north, 1 means east and so on.

In our case, the demand charge in the electricity tariff
depends on the fuse that must be used, see Table 2.

The model must therefore include expressions that calcu-
lates the current and which set proper values in the objective
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Table 2
Fuse tariff for Linkoping Sweden

Fuse size (A) 16 20 25 35 50 63 80 100
Annual cost (SKr) 1025 1165 1375 1863 2713 3475 4525 6338

function. In this case study, electricity can only be used for
running two heat pumps. The first one, Pyp, is used as a
normal heating device taking the heat from the ground water
while the other one, Pg,, takes it from the exhaust air. (It is
not plausible that both heat pumps are optimal but we do not
know in advance which solution is preferrable.) The effi-
ciency for the first one is set to 3.0 while the second one is
set to 2.0. Hence, the following constraints are used:

(1/3.0)X Pypo1—Pupr=0

Compare with expression no. (2) (12)
(1/2.0) Pgpo1— Pea=0 (13)
Pyp+Pga—Pg <0 (14)
—(1000/380%3%%)X Pz +CU=0 (15)

Eq. (15) is only used for calculating the current when we
know the demand for electricity and the voltage, which is 380
V. If the current is lower than 35 A, but higher than 25 A, an
annual cost of 1863 SKr must be present in the objective
function (see Table 2). This is achieved by using 8 new
binary integers, E, and 8 integers Y. In each set, only one of
the integers can be 1. Eight new constraints must be present
in the model and the first one is presented below:

Table 3

CU—16XE +MI1XY, <M1 (16)

M1 is a large value (in our case 10,000). If Y}, is set equal
to 1, and CU is lower than 16 (which is the first fuse size in
Table 2), E, finds the value 1. E, is then coupled to the annual
cost 1025 SKr, which is present in the objective function as
a present value. If CU is larger than 16, the E, must be set to
0.

The model now includes 150 constraints and 182 variables
where 74 are binary integers.

3. Optimisation

The model above is implemented in a Windows 95 pro-
gram and written in classic C. The program writes the math-
ematical problem to a so-called MPS-file, which is an often
used standard. Several optimisation codes can read such files,
e.g., CPLEX or LAMPS, but we have used the ZOOM pro-
gram [ 10] because we have some experience in that product.
By using ZOOM, it is possible to find the optimal way to heat
the building. First an oil-fired boiler with thermal size 21.3
kW, must be combined with a 37.8-kW heat pump, which
add up to 59.1 kW. Two building retrofits were also optimal
viz., low emissivity triple-glazed windows and weather-strip-
ping. The first measure decreases the demand from 71.96 to
61.80 kW while the second lowers the demand to 59.1 kW.
The heating equipment is therefore sufficient in thermal size.
In Table 3, the energy need for the optimal solution is shown
in detail.

Optimal demand (kW) energy need (kW h) and costs (SKr) for energy use in the studied building

Segment no. No. of h Oil-boiler Heat Pump Total costs
Demand Energy Cost Demand Energy Cost

1 368 - — — 36.62 13,476 4536 4536
2 184 2:51 462 240 37.88 6970 1308 1548
3 192 = = = 37.88 7272 1365 1365
4 336 = = = 33.49 11,253 3788 3788
5 168 2.68 450 234 37.88 6364 1194 1428
6 192 — — = 35.85 6883 1292 1292
7 336 = — - 22.06 7412 2495 2495
8 168 = = - 35.66 5990 1124 1124
9 240 = = = 26.59 6382 1198 1198
10 720 = = - 13.11 9439 1428 1428
11 744 = = — 4.70 3496 529 529
12 720 = — = 4.86 3499 529 529
13 744 - — = 4.70 3496 529 529
14 744 — = = 4.70 3499 529 529
15 720 — — = 3.23 2326 352 352
16 744 = = = 17.07 12700 1922 1922
17 336 - = — 26.28 8830 2973 2973
18 168 = ~ — 30.93 5196 975 975
19 216 = = — 27.83 6011 1128 1128
20 352 = - = 32.58 11,468 3861 3861
21 176 = = - 35.49 6246 1172 1172
22 216 = = ~ 33.55 7247 1359 1359
Sum 8784 = 912 474 — 155,455 35,586 36,060
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From Table 3, the average energy cost for each kWh can
be calculated, i.e., 0.23 SKr. This value is due to the heat
pump. This is also the reason for why there are only two
building retrofits being present in the optimal solution. It shall
be noted here that time segment number 15 only shows 3.23
kW where instead it should have been 4.86 kW. The higher
value must be present in order to provide the building with
domestic hot water. The reason for the wrong value is due to
the energy balance for the existing building where no retrofits
were implemented. The balance shows that the segments 11—
14 are only used for hot water heating while segment 15 must
use heat also for space heating. The binary variables coupled
to window retrofits and weather-stripping for segments 11—
14 are therefore not present in the in the MILP model. Seg-
ment 15, however, has such integers and therefore the model
saves heat due to the retrofits even if the value falls lower
than 3500 k Wh/month. The heating season will shrink if
more retrofits are optimal but the phenomenon is present only
in one time segment here. The total energy cost in Table 3,
which occur every year, must now be calculated as a present
value. The cost is therefore multiplied with 18.26, see expres-
sion (1). The heating equipment cost can be calculated by
use of expression (5). It was optimal to choose triple-glazed
windows with low emissivity coating. The cost for such win-
dows is assumed to be 1500 SKr/m? while weather-stripping
has a cost of 14,000 SKr and a life span of 10 years. In Table
4, all these costs are presented as present values and the sum
represents the total LCC.

It was not found profitable to add extra insulation to the
climate shield. Experience from the OPERA-model shows,
however, that at least extra attic floor insulation (many times)
is a profitable retrofit, [11]. When MILP is used, it is not
possible to use the so-called ranging method, i.e., to deter-
mine in which interval a variable becomes optimal. There-
fore, it is necessary to change a variable in the input data and
optimise the problem once again. One suitable parameter to
change is present in the cost function for insulation. The cost
for all insulation measures is presented in the following form:

Cins=C1+C2+C3><t (17)

where C, shows the unavoidable costin SKr/m?, C, the ‘step’
cost for the insulation in SKr/m? C; the cost in SKr/
(m?*Xm) and ¢ the added amount of new insulation in metres.
If the cost C, is changed it will only affect the possibility for
insulation to be optimal, not the amount of insulation that
should be added which is the case if C; is changed. In the
original case, C, was set to 260 SKr/ m? and this is now
changed to 200. The optimisation now shows that 0.14-m
attic floor insulation must be added. Because of this, a slightly
smaller heat pump should be used and, further, the total LCC
isreduced to 1.454 MSKTr. (The shift between extrainsulation
or not seems to emerge for a C, cost of about 240 SKr/m?).

As shown above, it was found that triple-glazed windows
were optimal. This is so because the original double-glazed
windows were worn out and their remaining life was set to 0
years. Suppose they have 20 years left before they must be

Table 4
Present value costs and LCC (SKr) for the studied building

Qil-boiler (28.4 kW) 58,001
Heat pump (12.6 kW) 217,153
Fuse tariff (20 A) 21,273
Energy - 658,456
Windows, east 136,341
Windows, west 125,521

Weather-stripping 33,099
Unavoidable retrofit cost 215,600
Life-cycle cost 1,465,444

changed. A new optimisation shows that window retrofits
will no longer be optimal, but instead 0.16 m of extra insu-
lation should be added to the attic floor. Some extra optimi-
sations show that window retrofits fall out from the solution
if the original ones have approximately 15 years left of their
remaining life.

4. Conclusions

Itis shown that a building can be described mathematically
in the form of a Mixed Integer Linear Program (MILP)
model. The integers are very important because ‘steps’ in the
cost functions can be dealt with. Small changes in these steps
might result in different optimal solutions. Fortunately, the
optimisation results in solutions that differs very little from
each other in terms of the minimised Life-Cycle Cost (LCC).
Small errors in input data therefore do not necessarily lead to
hazardous solutions as long as the proprietor acts in an opti-
mal way. However, if combinations of measures that do not
fit together are chosen, the result is likely to be an expensive
experience.
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