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Abstract

Cross cut operations in the wood industry is an important industrial process. The
cutting is based on the contents and location of different defects on the wood surface.
This information is then used by an optimization module that cuts each individual
board in an optimal fashion given specific product values. However, most production
processes have a fixed demand of each product and this aspect is not considered in the
cross cut optimization. We describe and investigate some control strategies that guide
the process so that the total number of boards used can be kept as low as possible while
simultaneously maintaining a smooth production. These strategies continuously change
the relative product values used in the optimization module. We perform numerical
analysis on a number of different scenarios and these results show that the proposed
control strategies substantially can reduce the number of boards used.



Preface

The study described in this paper is a part of a larger project called Optimization
of wood manufacturing industries involving the County of Kalmar, Linkoping Univer-
sity and some wood manufacturing industries in Kalmar county. The overall aim of
the project is to develop production techniques and strategies for wood manufacturing
industries in order to increase their competiveness. We have chosen an overall ap-
proach which is based on mathematical modelling of the real applications and then use
optimization techniques to come up with efficient strategies. Close cooperation with
companies are an important part of the project. Companies involved in the study are
members of a consortium called Consortium Wood Industry Kalmar but this member-
ship has not been mandatory to participate in the project. Two factories are studied
here, Bringholz furniture in Ruda and Moérlunda chair and furniture in Mérlunda both
sited about 300 km south of Stockholm. The project is financed by the County of
Kalmar and the European Community, through Task 5b. We acknowledge the valu-
able cooperation with Barbro Molinder at the administration of the County of Kalmar.
The work in this particular paper is about production control strategies which can be
used in any wood manufacturing industry where there is an unknown quality of the
raw material used to manufacture particular products.



1 Cross cut operations

Traditionally, cross cutting of boards in the secondary wood industry has been a manual
task requiring experienced labour. The operator tries to cut out an optimal mix of fixed-
length products from boards containing defects such as knots, splits, resin pockets etc.
The operator is thus manually performing all the three tasks, inspection, optimization
and cutting. Nowadays, most cutting is done using optimizing saws where only the
inspection task is performed manually. The operator uses a special fluorescent crayon
and partitions the board into sections which are given different quality labels based on
the contents of different defects. The markings are read by a special camera and an
optimal saw pattern is calculated based on a given cutting bill, which is a list of products
to cut. This list includes a description of the products, for example, dimensions,
demand and quality restrictions. An important aspect is also the associated value for
“each product. The overall objective of the process is to cut a specified number of each
product in a cutting bill with as least number of boards as possible. An important
observation is that this objective is not equivalent to the problem where each board
is to be used in an optimal fashion given product values. This distinctive difference
makes the overall process into a much more complex problem than it seems in the first
place.

There are many industrial processes where the production is controlled by setting
product prices or values. This is typically the case when raw material is of unknown
quality and when there is a specific demand of products. These products, in turn, have
specific quality requirements. Products in this application are then used in further
manufacturing processes into e.g. chair arms, chair legs etc. The overall aim is to use
the raw material in an optimal way. A problem that arise is the fact that routines
are used to optimize individual boards. These routines are unbeatable when it comes
to optimize single boards. However, this is only a local view of the problem and the
global view when a certain demand profile is given can not be considered.

A simple example is as follows. Any optimization routine requires product values in
order to optimize and we can suppose that these are known in advance. Now, suppose
the optimal use of boards give a proportion 60% product A and 40% product B.
However, the demand may be given such that the proportions should be 20% and 80%,
respectively. To control the previous example we need instruct the optimization routine
that product B is relatively more important than A as compared to the initial values.
This weighting of products can be viewed as an internal weighting to compensate for the
demand profile. An optimal weighting is the one which gives a production distribution
that correspond to the actual demand with the use of as few boards as possible. The
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problem we focus upon is how to find this weighting.

Various cross cutting applications for individual boards has attracted a lot of attention
in the literature. Examples of this is Brunner et al. [3], Klinkhachorn et al. [10] and
Carnieri et al. [5]. Carnieri et al. [6] adopted an approach to the problem together
with heuristic procedures for the rip-first and crosscut first cutting strategies. Most
of these deal only with the optimal use of clear areas in the presence of defects which
must be removed. Carnieri et al. [5] consider an application with one defect. Defects
are handled in a more general way by Sarker [15] who discusses value as a function of
defect contents and Sweeney and Haessler [16] who introduce multiple quality grades.
Although none of them addresses cutting of wood directly, the problem discussed by
Sweeney and Haessler is actually identical to the old crayon marking crosscut problem.
In Ronnqvist [12] a general mathematical model for the cross cutting with different
quality zones are presented. This model was later used in Astrand and Rénnqvist [1]
and Ronnqvist anAstrand [13] where approaches for integrating the defect analysis and
model formulation are presented.

For the overall production control of cross cut operations there is essentially nothing
reported. In an automated system using optimization there is a need to heuristically
and explicit adjust objective coefficients in order to meet product demands. Figure
1 illustrate the overall control process. It is obvious that a poor internal weighting
may lead to poor results in an automatic process where there is none or little manual
interaction. If internal prices is not dynamically adjusted the optimization process will
create an off-balance production in relation to what is wanted. A strategy that is based
on the global process will lead to a better raw material useage. Does it exist an optimal
price setting policy? That is a hard question and depends on the actual application. If
it is possible to obtain information about the raw material and the underlying processes
it is possible to customize control strategies.

Existing strategies, if any exist, can be very crude. One is simply to set a fixed product
value which is kept and then continuously remove each product from the cutting list
once its demand is satisfied. Cutting solutions towards the end will obviously give rise
to a lot of wastage as the number of possible combinations will drop drastically with the
decreasing number of products. Generally cost coefficients would be initialized using
different criteria based on experience. In other all are set to the same initial value or
there may be a scaling depending on e.g. the length of the products.

In this paper we concentrate on the standard problem with crayon marking mentioned
earlier. The quality restrictions are simple; each product must be cut from a defect free
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Figure 1: Overall control process.

part of the board. In Figure 2 an illustration of the main steps of this cross cutting
process is given. Wooden boards are transported on a conveyer belt from storage
piles to the operators who identifies and mark all defects. Thereafter, this information
together with the cutting bill is used to define and solve an optimization problem which
gives the cutting pattern. The solution is then used to generate sawing instructions for
the saw. Once the board is cut, it is sorted into the correct product pile.

°] o ° |

defect detection => crayon marking

] o *l |

optimization => cutting pattern

P] Prod A lProdC I. '| Prod B | ProdBl ProdBI
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Figure 2: Illustration of the main steps of the cross cutting process.

The outline of this paper is as follows. In Section 2 we describe the underlying process
including the optimization problem that we want to control. In Section 3 we discuss



a production planning problem that is based on the assumption that all boards are
defect free. It is then possible to formulate an optimization problem that finds an
optimal strategy in finding cutting patterns that minimizes the total number of boards
used. In this section we also introduce an example that will be used as an illustration
of the various strategies tested. In Section 4 we describe a number of different control
strategies. These are then initially tested on defect free boards. In Section 5 we apply
the same control strategies on boards that have defects which is the realistic case and a
considerably harder control problem. In Section 6 we investigate some basic properties
of the control problem. In Section 7 we study how the control strategies behave under
various input scenarios. In Section 8 we discuss some issues raised throughout the paper
and how the control strategies can be used in other related and similar applications.
In the last Section we make some concluding remarks.

2 Optimization problem to control

To develop control strategies for the overall planning problem it is important to be
familiar with the optimization problem. In this section we formulate this optimization
problem that can be used in general cross cut operations. This section is not a prereg-
uisite for the remaining part of the paper but it gives a background to the optimization
problem and its solution methods.

To formulate the mathematical model we discretize the board into n elements. The

size of each element could vary but is typically 10 mm. We introduce the following
notation.

[; = length of product 7 expressed in elements.
e value for product i.
1 if product ¢ starts in discretization element j
0 otherwise
1 if product ¢ which starts in discretization element j
Biih - = also covers discretization k
0 otherwise
1 if product ¢ which starts in discretization element j
b = is a feasible allocation.
0 otherwise



The coeflicients a;; are easily determined by

o _J 1 i <kLj+l,i=1,...,m5=1,...,n, k=1,...,n
%jk =\ 0 otherwise

To find values for the coefficients b;; we need to check against the defects in each board.
The model can now be stated as

[P] max Z Z ;b

i=1 j=1
m P
s.t. ZZaijkb,-jxij S 1 j=1,...,n
=1 k=1
Tij & 401} t=1 s =210

The n constraints ensure that any position (element) is covered by at most one product.
The b;; coeflicients are determined by the quality restrictions and therefore we need to
check each variable against all its restrictions. The problem is a so called set-packing
problem which is a well-known integer programming problem. Each product makes
a contribution to the constraint set in the form of a column. The coefficients in the
column is either 0 or 1. Furthermore, all 1’s are adjacent. These two properties makes
it possible to reformulate problem [P] as a longest path problem in an acyclic network.
The arcs in the network (after the filtering process) represent feasible products and the
nodes represent potential cut positions. This final problem can efficiently be solved
using a Dynamic Programming (DP) procedure.

The method to solve the model is illustrated in Figure 3. In the upper figure we have
two products with lengths three and five (elements) and values 3 and 6 respectively. We
start by assuming that all allocations are feasible. In the middle part we have tested all
quality restrictions and the pruned graph include all feasible allocations. This network
is then used to solve the longest path problem where the optimal path is given in the
lower network. The corresponding physical cutting pattern is given at the bottom of
the figure.

The cross cutting problem can be solved by classical DP which essentially decomposes
a large problem into a series of more tractable smaller problems. General references
on DP are e.g. Dreyfus and Law [8] and Martello and Toth [11]. In DP nomenclature
the problem has the following characteristics: The problem is divided into stages,
represented by the discretization elements at which a decision is required. At every
stage, the model can be in a number of states. States provide information needed to
make an optimal decision at every stage. The decision made at every stage describes
how the state at the current stage is transformed into the state of the next stage. Most
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Figure 3: An illustration of the solution approach.

importantly, the decision made at the current state is independent of previously reached
states or previously chosen decisions. This is called the Principle of Optimality. In this
application it is a one-to-one correspondence between stages and states. Finally, there
will be a recursion which relates the reward gained from the current stage to that of
previous stages. At each stage the decisions made to reach each state is recorded. A
link or arc from one stage to another correspond to a product, and the value assigned to
that link correspond to the product value. The recursive relationship using a forward
DP formulation of the problem can be written as

f(5) = max{e; + f(5 - L)}

Here, f(j) is the optimal policy function value at stage j (or element j) and I; C
{0,1,...,m} is an index set defined by which cut-options that are feasible at stage j.
Note that, in order to enable gaps between consecutive products, an artificial product
with length lp = 1 and value ¢ = 0 is introduced. We also need to ensure that
1 <j—1; <n. Welet y(j) record the optimal decision how each stage were reached.
Each y(7) is therefore simply a back pointer to where the cut-option started. The initial
condition for the problem is f(0) = 0. The optimal objective function is found at stage
n, i.e. f(n). Once f(n) is found, the optimal solution is identified by backtracking
using the back pointers y.



3 Production planning

The aim of the production control is besides using as few boards possible also to achieve
a production that is smooth. By this we mean a production where each product is
produced in about the same pace and that the demand is reached in about the same
time. In Figure 4 we illustrate production of two products, A (dashed line) and B (solid
line). One production profile (left) illustrates a production (left) which we regard as
smooth whereas the oher (right) gives a off-balanced production i.e. non-smooth. An
important property of a smooth production is that it will use less boards. The main
reason is that it is possible to find efficient cutting patterns throughout the production
with many products available. In a non-smooth production there will be less products
available allowing less cutting patterns.

Remaining demand Remaining demand

Number of boards used Number of boards used

Figure 4: Illustration of a smooth (left) production of two products and a non-smooth
production (right).

3.1 Case study

In our study of the control processes we will use one standard example throughout
the paper. The cutting bill has six products, denoted A to F. Information regarding
product length and demand is given in Table 1. Each product requires a defect free
area corresponding to its length.

3.2 Mathematical models

In some cases when the quality is known in advance, for example, with boards of the
same lengths and defect free it is possible to formulate a mathematical model that
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Product Length (mm) Demand

A 2500 1000
B 2100 1000
C 1800 1000
D 1500 1000
E 1400 1000
P 900 1000

\

Table 1: Cutting bill with information about length and demand for the six products

in the case study.

providse an optimal solution i.e. a solution which requires a minimum number of

boards. We start to describe this problem as it gives some insight into the general

problem. Moreover, it will give an estimate of the minimum number of boards re-
quired when defects is introduced. To formulate the mathematical model we introduce
variables that represent the number of times a specific cutting pattern is used. We also

need information about each cutting pattern.

y; = Number of times pattern j is used.
a;; = Number of product ¢ in pattern j.
b; = Demand of product :.

The mathematical model can now be stated as

[PP] min Zyj
J=1
s.t. Zaijyj 2 bz' i=1,...,m
Jj=1
Yj €01} =15 n.

To apply this model for our case study we assume that we have boards of length
5,500mm. In Table 2 we give some potential cutting patterns to use. We note that

this is a small subset of the total number possible.

For our example, model [PP] becomes
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Cutting Scrap  Number of products

pattern (mm) A B C D E F
1 100 0 0 0 O O 6
2 400 0 2 0 0 0 1
3 0 1 1.0 0 0 1
4 200 ¢ 0 1 0D 2 1
5 500 2 0 0 0 0 0

Table 2: Five possible cutting patterns.

[P] min y1+y2+ys+yatys...

1000
1000
1000
1000
1000
1000

s.t. Y1+ Ya +

v

Ys ...

OO OO O
_ O O oNO
N = OO
OO OO N

1
1
0
Y2 + 0 Y3 +
0
1

Problem [PP] is an integer programming problem. To solve it there is a need to
generate all possible cutting patterns (or columns in the model) in advance or to use
a column generation approach where the cutting patterns are generated dynamically
based on dual information. The subproblem in a column generation scheme can be
formulated as follows.

[Sub] min Y (¢ — Y o)z
=1 k=1

s.t. S Lz < 5,500
=1

i =2 0, integer- i =1,...,m,

Here, z; is the number of products ¢ used in the cutting pattern and /; is the product

length. The koefficient oy is the value of the dual variable associated with constraint

k in problem [PP]. Once the LP-relaxation of [PP] is solved, a subproblem [Sub] is

solved to generate a new cutting pattern. This process is repeated until no cutting
n

pattern with a negative reduced cost, i.e. (¢; — »_ o), is found. To find an optimal

integer solution it is necessary to include a Bra];l—cil& Bound algorithm. To describe
this is outside of the scope of this paper. For our example, (after column generation
together with Branch& Bound) the optimal solution is given in Table 3. The total
number of boards needed is 1867.
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Number of Pattern used, Number of products

patterns A B C D E F
67 0 0 3 0 O 0
600 1 1.0 0 O 1
300 1 g-0-2..0 0
400 £ N S S ¢ 0
400 0 0 1 0 2 1
100 1" -8 0.0 2 0

Table 3: Optimal solution for our example given defect free boards of length 5500mm.

3.3 Control strategies

There are three control strategies that we will study. The first one, Fized, which is
the commonly used one, is based on removing a product from the cutting bill once its
demand is reached. The product value is fixed during the production.

o we{s RO <

0 otherwise

Here, ¢; is the adjusted value used in the cross cut optimization, ¢; is the initially
chosen product value and p(7) is the current production of product :. The second
strategy, Scaled, is based on a relative value based on the proportion of the current
production level for each product. This relative value will be decreasing monotonically
until demand is reached.

[Scaled] e = { cixp(2)/bi  if p(z) < b;

0 otherwise

The third, Dynamic, is based on a dynamically changed value. Here we use c2'¢ to
represent the value used for the previous board and aver to represent the total cur-
rent average production i.e. aver = 1/m(3, p(¢)/b;). The value const is a positive
constant (unless otherwise stated we have used the value 10). The product values will
fluctuate depending on the current production levels of the different products. The
idea is to increase the relative value if the production is falling behing the average
production and vice versa if the production is ahead.

. i e + const * (p(1)/b; — aver) if p(i) < b;
Hymamid e { 0 otherwise

We also need to select an initial value for each product. We will also study various
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rules but in the first tests we limit ourselves to two simple alternatives. The first initial
value is to choose the same for all products (we have used 100) and the second is to
choose a value which reflects the product length.

4 Production control with defect free boards

The numerical results presented in the remaining sections are obtained through a sim-
ulation where we have a cross cutting process. We have generated a large number of
boards that represent the real situation at a production line. The simulation follow the
description given in Figure 1. The implementation for the optimization routine is done
in Visual Basic and the routines which implement the three strategies is implemented
in Visual Basic linked with EXCEL.

In this section we will start with a simplified study and use defect free boards all with a
length of 5,500mm. One reason for this is to be able to compare the solution obtained
from the planning problem described earlier. Table 4 gives the results from these initial
tests. We note that the optimal solution from the planing problem gives a lower bound
of 1867 boards. It is clear from these results that updating may play an important
role.

Strategy Initial values Number of boards used Percentage (%)

Fized 100 2168 100.0%
Fized length 2002 92.3%
Scaled 100 1901 87.7%
Scaled length 1868 86.2%
Dynamic 100 1913 88.2%
Dynamic length 1869 86.2%

Table 4: Results using the three strategies for defect free boards.

To illustrate the behaviour of the strategies we have included a number of figures where
we provide profiles of the product values and demand during the process. Figure 5 gives
the demand (or production) profile for strategy Fized where the initial values are 100
(left) and product length (right). Using initial values of 100 first favours a pattern with
6 product F', then a pattern with 2 product E and one product C, and so on. Having
initial values scaled to the length of the products favours a cutting pattern with one
product A, one B and one F, respectively. Initial values of 100 will favour patterns
with as many pieces as possible whereas the second selection will favour patterns with
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Demand

as little waste as possible. We note that change in patterns appear as the production
of certain products reaches its demand. This is a typical example of a non-smooth
production.

1100 1100
1000 1000 T
: Y
s00f 00 : \
>4 % \
800t 8001 F “
: B \
700+ 700 c s
600 B 600 \
\
Ok G e N e Viosans § 5001 D
\
400 ! 4001 \‘
i 1
3001 g 300+ i
: \
200 [ 2001 b
1001 \ 100} 4
4 A
0 \ i . ) 0 L R TS
) 1000 1500 2000 2500 0 500 1000 1500 2000
Number of boards used Number of boards used

Figure 5: Demand profiles using the strategy Fized with initial values of 100 (left) and
product lengths (right)and defect free boards.

In Figure 6 we have used the Scaled strategy with initial values of 100. The left part
gives the value profile and the right part the demand profile. It is obvious that this
strategy provides a better production as all products meet their demand essentially at
the same time. Furthermore, it requires much less boards as compared to the Fized
strategy. This is also true for the case when we have initial values corresponding to the
length, see Figure 7. The number of boards used here is even less and the production
profile is smoother.

Corresponding results with strategy Dynamic is given in Figures 8 and 9. We can
clearly see that by using initial values corresponding to the length we obtain a more
stable production. In Figure 8 there is a need for the products to establish some stable
level for the values before the production becomes stable. For the case with initial
values of length in Figure 9 we get a smooth production.
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1100

Product value

Number of boards used

Figure 6: Value (left) and demand (right) profiles using the strategy Scaled with initial
values of 100 and defect free boards.

Demand

Product value

2 ! L L L L . L
) 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of boards used

Figure 7: Value (left) and demand (right) profiles using the strategy Scaled with initial
values corresponding to product lengths and defect free boards.
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Figure 8: Value (left) and demand (right) profiles using the strategy Dynamic with
initial values of 100 and defect free boards.
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Figure 9: Value (left) and demand (right) profiles using the strategy Dynamic with
initial values corresponding to product lengths and defect free boards.
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5 Production control with defects

The boards used to test a practical situation with defects are randomly generated with
a length uniformly distributed in the interval 4,000-7,000 mm (The average length is
5,500mm). The number of defects is limited to between 0 and 4 for each board, and
the average number of defects for a 5,500mm board is 2.0. The results from applying
the three strategies is given in Table 5. The potential decrease in the number of boards
required is even larger in the case with defects. A potential reduction of 18% obviously
correspond to a large savings in raw material.

Strategy Initial values Number of boards used Percentage (%)

Fized 100 3085 100.0%
Fized length 2364 76.6%
Scaled 100 2332 75.6%
Scaled length 2236 72.5%
Dynamic 100 2279 73.9%
Dynamic length 2220 72.0%

Table 5: Results using the different strategies for boards with defects.

To illustrate the behaviour of the strategies we have again included a number of figures.
Figure 10 gives demand profiles with the Fized strategy. With a common initial value of
100 (left) the production becomes non-smooth. With initial values relating to lengths
the situation improves but there is still not a smooth production.

§

)

©

1500
Number of boards used Number of boards used

Figure 10: Demand profiles using the strategy Fized with initial values of 100 (left)
and product lengths (right)and boards with defects.
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Product value

Using the Scaled strategy as in Figure 11 provide a production that brings the pro-
duction ends of all products except product F' together. The reason is that product F
has a too large relative value as compared to the other. In Figure 12 where the length
determines the initial values we have a much improved production profile.

sk s 2 ae 28,

8

C

X 1 -~ J
1000 1500 2000 2500
Number of boards used

8t

L L
1000 1500 2000
Number of boards used

Figure 11: Value (left) and demand (right) profiles using the strategy Scaled with initial
values of 100 and boards with defects.

1 1 1 L 1
[} 500 1000 1500 2000 2500 (1] 500 1000
Number of boards used Number of boards used

Figure 12: Value (left) and demand (right) profiles using the strategy Scaled with initial
values corresponding to product lengths and boards with defects.

When we use the Dynamic strategy, see Figure 13, with board lengths as initial values
we have a smooth production and all products will reach their demand in about the
same time. A problem occur for the case when we use the same initial values, see
Figure 14. Here, the value profiles get a tendency to increase as long as product F'is in
demand. The reason behind this is that there is nothing which limits the total product

19
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value which is down at 0. When product F' obtain a value of 0 and the production is
ahead of the other products then all products (except F') will have a production profile
which is below the average. All these products will now increase their values in order
to compensate for this. However, product F' will continue to produce as there will be
short pieces where only product F fits. Hence, the total value will increase as long
as F is below average production and has not reached its demand. To overcome this
we make a modification which enforces the total value to be constant for the active
products (i.e. products that have not reached their demand). The way we implement
this is to use the same updating formula combined with a rescaling. This modification
is given below.

[Dynamic]| T: = & * sumy/sums,
where
&= 2 + const * (p(1)/b; — aver) if p(i) < b;
0 otherwise
sumy = Zéi
1€l
SuUmq = Z c:-’ld
i€l

The index set I is defined through I = {7 : & > 0} which denote all products that have
not reached their demand. Using this modification (which we keep for all tests using
the Dynamic strategy) we get profiles as given in Figure 15.

Demand
EEEWET

8

C

8t

L X J
1000 1500 2000 2500 1000 1500
Number of boards used Number of boards used

Figure 13: Value (left) and demand (right) profiles using the strategy Dynamic with
initial values corresponding to product lengths and boards with defects.
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Product value

Product value
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7001 | i k
5 700
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| ® 600
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400
400
it 300
b 200
100 : 100
80 50 00 7500 200 500 % 500 1000 1500 2000
Number of boards used Number of boards used
Figure 14: Value (left) and demand (right) profiles using the strategy Dynamic with
initial values of 100 and boards with defects.
250 1100
10W'
700
® 600
&
400
2500 ‘o 500 1000 1500 2000 2500

Figure 15: Value (left) and demand (right) profiles using the modified strategy Dynamic
with initial values corresponding to product lengths and boards with defects.
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Demand

6 Initial value selection

It is obvious that properly selected initial values has a positive impact of the overall
performance. This is more critical for the Fized and Scaled strategies. To investigate
the impact of the internal weighting between products we study the case when only two
products are in demand. In Figure 16 we have demand profiles using A and B (left)
and products A and F (right). In both these situations we have used the board lengths
as initial values. It is obvious that it is very difficult to get a smooth production with
this strategy. Using the comparison with products A and B for the Dynamic strategy,
as in Figure 17, we get a more controlled production. An interesting aspect is that the
value of B occasionally become larger than the value for A. Hence, to get a smooth
production it is important to allow the values to dynamically change and pass each
other. When we compare products A and F in Figure 18 we note that it is more
difficult to control the production. The reason is that product F' does not compete
with product A for a large proportion of the boards. Even if the value of A would
increase infinitely it is not possible to decrease the production of F' below a certain
level. When the production profiles becomes tangled, the value for F' flips between 0
and a very low value in order to keep up with the production of A. A different result
appear when we compare products D and F. Then we get a profile as given in Figure
19 where there indeed is a more intense competition between the products.

1100 1100
1000 1000}
900 900}
8001 800F
7001 700+
600 = e0of
500 o 500
400 400}
300 300}
200 2001
A}
1001 \ 1001
\
\
0 L L . " h L ) 0 L n s ) L
0 200 400 600 800 1000 1200 1400 1600 [} 200 400 600 800 1000 1200
Number of boards used Number of boards used

Figure 16: Demand profiles with strategy Fized when there is a demand of only prod-
ucts A and B (left) and products A and F' (right).

If we compare two products that are very similar in length e.g. products D and E
we find that the Fized strategy gives a production that favours D as it has a slightly
higher value. This is illustrated in the left part of Figure 20. The right part of the
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Figure 17: Value (left) and demand (right) profiles with strategy Dynamic when there

is a demand of only products A and B.
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Figure 18: Value (left) and demand (right) profiles with strategy Dynamic when there

is a demand of only products A and F'
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Figure 19: Value (left) and demand (right) profiles with strategy Dynamic when there
is a demand of only products D and F'.

Figure shows the demand profile for products A and F. Using strategies Scaled and
Dynamic gives much better performance, in Figure 21 we give the value and demand
profiles using the Dynamic strategy for products D and E.
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Figure 20: Demand profiles with strategy Fized when there is a demand of only prod-
ucts D and F (left) and products D and F (right).

6.1 Pairwise comparison

One approach to find weightings in other applications is an idea by Saaty [14]. This
is based on finding a relative weight between all pair of products. In Table 6 we give
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