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Abstract

When chairs and other furniture are designed the work is mostly
founded on handicraft experience. Calculations based on solid mechanics
theory are almost never used in order to find out optimal solutions for
different wood members, or the structure as a whole. We have therefore
studied a simple chair, made of birch, where the emphasis is laid on its
ability to carry different loads. Using the method of finite elements we
have predicted the strain and stress at different points on the chair struc-
ture. Further, we have manufactured the chair and exposed it to the same
load pattern as used in the finite element calculations. The strain has been
monitored and compared to the calculated value at the points of most in-
terest. The result shows that part of the calculations corresponded fairly
well with the monitored values but also that much work still remains in
order to totally predict the accurate structural behaviour for such a sim-
ple frame as a chair. Probably, some of the discrepancies depend on the
wood material which exhibits so different response for stress in different
directions.

INTRODUCTION

In recent years, more interest has been shown for wood as a material. This,
because of the advantages from an environmental view. Wood is a renewable
resource and further, there is no problem when e. g. furniture is taken out of
service life. It is even possible to use it as fuel in the form of biomass. Aesthetic
reasons many times also speak for wood. However, there is a debate about using
woods from the rain forests and therefore, wood species which grow in our own
country would be perfect as raw material. In Sweden, much effort has been laid
upon research about wood of spruce and fir which are the main species for our
export. Less emphasis has been put on our broad leaved types, such as birch,
alder, maple and so forth. Sweden also acts as an undeveloped country when
one considers that almost all our wood is exported as sawed lumber. If more of
the wood could be utilised and converted to finished products this could have
an important effect on our trade balance and budget deficit.

Furniture design in Sweden, as well as in other countries, rests upon tradition
and handicraft experience. It is nothing wrong with that but, by the use of
modern computers and sophisticated mathematical models, it should be possible
to find new ways to design chairs as well as other furniture in order to utilise the



material much better than before. However, the scientific research in this field
does not, seem to have the highest priority. We have only found four groups in
the world dealing with this subject. First we have Eckelman and a few others
in the U.S.A. In e.g. Reference [1] the author, as early as 1966, shows how
a chair works as a mechanical structure and how it carries the loads exerted
by ordinary people. He also calculates the moment at different spots in the
structure for various locations of a stretcher. His work has after this continued
and in Reference [2] the knowledge in this field is presented in a book containing
about 400 pages. Other contributors are the authors to Reference [3] where
case furniture, such as cabinets, are studied. Chairs and structural mechanics
have also been of interest in Poland. In Reference [4] the authors shows the
result from calculations on cabinets but they have also published papers about
chairs. The most interesting from our point of view seems unfortunately only
to be available in Polish. In Japan they have studied furniture joints in more
detail, see e.g. Reference [5]. Hitherto, our own contributions, dealing with
structural mechanics and furniture, is limited to Reference number [6] where we
optimised the location of a chair stretcher and in Reference [7] examined the
stability problems on compressed members in a chair. The studied structure in
Reference [6] as well as the result are shown in Figure 1.
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Figure 1: Optimal location of a chair stretcher in order to minimise the moment
in the joint where the seat meets the back rail, [6].

The main result of our calculations in Reference [6] was that the stretcher
should be located as low as possible on the back rail and as high as possible



at the front rail. This, of course, only as long as the loads do not change.
These findings encouraged us to actually manufacture the chair as designed in
Figure 1, and after this to use it for experiments. The interesting thing to study
is if these more complicated methods, such as the finite element method, are
applicable for such a complicated material as wood. The chair is manufactured
in birch and we have therefore started by some minor materials investigations
for this wood species.

TESTING OF BIRCH AS A MATERIAL

In e. g. Reference [8] or [9] some values could be found for birch as a construc-
tions material. For a start, Young’s modulus are shown to be about 166,700
kp/cm? or 16,670 MPa in the direction along the grain, 630 MPa in radial di-
rection and 1,130 MPa in the tangential direction. The rigidity modulus, G,
are for the directions xz, yz and xy 1,200, 190 and 930 MPa where x is the
radial, y is the longitudinal and z is the tangential direction, see Reference [8]
page 295. It is obvious that the direction of the load is essential to the resulting
stress and strain. These values show how wood acts in the elastic region. If
the load is increased, the material comes into the plasticity region and no linear
relationship between strain and stress is found. Further, it is also of interest to
study what actually happens when the load is increased to the level of rupture
because it is possible to design furniture to that point or at least immediately
below it. It is not a catastrophe if a chair breaks and hence it is possible to
use much higher design stresses than are used for buildings etc. In Figure 2 a
tensile test is shown for birch.
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Figure 2: Tensile test for birch

From Figure 2 it is obvious that the strength of rupture is about 165 MPa.
This is more than was shown in Reference [9], page 164, which was 134 MPa.
Obvious is also that there are two distinct modulii of elasticity, one below the



marked knee, i. e. 18,200 and one above which was calculated to 6,450 MPa.
Another phenomenon is the fact that birch does not break at one specific stress.
When the stress in Figure 2 was about 160 MPa you could hear some fibres in
the material break, but almost instantly, others came into rescue. A significant
extra strain could therefore be introduced without a total collapse in the ma-
terial. We also want to mention some difficulty in applying the correct length
of the wooden test specimens when the strain is to be calculated. Not always
did they break at their thinnest part. Instead a long crack many times occurred
which lead in under the grips of the tensile test apparatus. Using extensiome-
ters to a part solved this problem but they malfunctioned when the region of
fibre breaking occurred. The resulting strain stress curves were then useless for
scientific evaluations.

Problems also occurred when performing compression tests. We found it
of great importance to choose short specimens with sufficient cross sectional
area. Otherwise the material started to plasticise immediately because only a
corner of the specimen was used for carrying all the load. In Figure 3 one of
the compression tests is shown.

Compression
stress [MPa]

100

stol2f3a.grf

80

60

40

20

0- : : : | Strain
0 2 4 6 8 10 12 [%]

Figure 3: Compression test for birch

The compression Young s modulus was calculated to 4,700 MPa which is
about one fourth of the tension modulus. The compression strength of rupture
is about 82 MPa in Figure 3, which is about half the value of the applicable
tension strength. It is also obvious that a load higher then the crushing strength
does not lead to disaster. The wood specimen endures a lot of strain without
breaking totally to pieces.

The fact that wood shows such a big difference between tensile and compres-
sion strength has implied the common use of bending strength as a value to be
used in structural mechanics calculations. The standardised method assumes
that the stress is linearly and symmetrically distributed over the cross section
which cannot be valid for wood, where the behaviour differs so much between
tension and compression, see [8] page 360 for more details. In Figure 4 a three
point bending test is shown for birch.

Note that the bending stress is calculated as:
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Figure 4: Stress-deflection curve for birch
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P shows the load in N, L the span and M the moment in the middle of
the span. [ is the moment of inertia, b the breadth and h the height of the
rectangular test specimen. The curve seems to be perfectly linear up to a value
of about 120 MPa and after this the specimen starts to plasticise. Of interest
is also the fact that the beam did not break at a specific point. Some fibres
seems to break at about 160 MPa and a deflection of 1.6 mm, but as found in
the tension test others carry the load instead.

If the bending stress is reached, immediate disaster is therefore not in-
evitable. However, the construction can not carry such a load for longer periods
of time. In the case of a chair the person sitting on it will of course rise when
the wood starts to creak. The modulus of elasticity, MOE, see Reference [§]
page 300, for a bending test is calculated as:

PxL3
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where P equals the breaking load, L the length of the specimen span, y the
deflection, w the width and h the depth. In our case, this calculation results in
a MOE of 13,450 MPa. All our wood specimens had moisture contents of about
6 %.

FINITE ELEMENT CALCULATIONS

In Reference [7] we have shown that the method of displacement could be used
when calculating internal stress and strain for members in an indetermined
frame. In such a frame, these values could not be calculated without considering
the rotations and displacements of the frame. It is not possible to show the
method in its entirety, not even in Reference [7], because of the limited number
of pages and therefore the interested reader is referred to Reference [10] for all



details. However, the displacement method uses the fact that by introducing
rotations and displacements it is possible to elaborate the stiffness matrix of the
indetermined frame. In Figure 5 a simplified frame is shown of the members of
interest in the chair.
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Figure 5: Back rail, seat rail and stretcher in the simplified frame

In Figure 5 the back rail, which is a statically determined part, has been
replaced by a moment P x L. The front leg is likewise statically determined
and therefore not used for finding the matrix. The indetermined frame that is
left must be analysed by use of the deformations in the frame. Therefore, the
cross sectional areas must be known for the different members. In Reference [7]
we used a stretcher of 0.005 times 0.02 m which was probably too week because
of stability problems. In our experiment chair the stretcher is stronger, with a
cross sectional area of 0.01 times 0.02 m. The back rail is 0.01 times 0.03 m and
the same is valid for the seat rail. The displacement method now tells us that
the moments acting on the frame by the introduction of the rotation in the left
part of the frame is:
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where I; equals the moment of inertia for the seat rail and I the same
value for the stretcher. The moment of inertia for the seat rail equals w

while the stretcher has a value of w, or 2.25 x 107® and 6.66 x 107°
respectively. The stretcher therefore has a moment of inertia that is one third
of the one for the seat rail and hence they, below, are set to I and 0.3 I. Using

the same method for the other six matrix elements results in the equation:
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Solving this small system of equations results in g; = g3 = —0.0567 and,
g2 = +0.1533 PE—LIZ. We must also find the moments and internal forces, and
from Reference [7] they are found as:
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Due to the convention of signs and by inserting P = 300 N and L = 0.4 m
the following moments apply:

M2 = 9.58Nm (tension below) Ms; = 60.0Nm (tension above)
M3 = 60.0Nm (tension inside) Mz = 9.58Nm (tension outside)
M3, = 9.58Nm (tension outside) Mz = 9.58Nm (tension inside)

It is now possible to calculate the internal forces only by use of the equations
of static equilibrium and the result is that the stretcher has a shear force of 34 N
while the axial compression force is 636 N. The seat rail shear force is at the
same time 174 N and the axial tension force 463 N. The back rail is compressed
by a force of 174 N while the shear force is of the same size.

VERIFICATION OR NOT

The moments and forces in the frame have now been calculated. We have also
monitored the strain on four different points in our first experimental chair by
using strain gauges of the type HMB LY 120-10. The first two points are located
on each side of the back rail just above the seat rail. The next two points are
located on each side of the stretcher and at half its length, see Figure 6.

In Figure 6 the number and location of the monitoring devices are shown.
Further, the forces that are applied on the chair are presented, where P is the
load that has been varied in the experiment. P; shows a load of about 600 N
that is applied in the front because else the chair would turn over. The force P3
only shows a fixed stop at the floor or otherwise the chair would slip when P is
applied. The monitored strain is shown in Table 1.

As seen in the table we only have loads up to 150 N. This is so because
the joint between the seat and the rail broke when 200 N was charged. The
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Figure 6: Location of the strain monitoring devices

Force [N]  Strain [gm/m] for device nr

1 2 3 4
50 -456 +583 +32 +10
100 -808  +1001 +51 +32
150 -1095 +1562 +70 +63

Table 1: Monitored strain in p?m/m for different loads P in N

dowel joint was not satisfactory manufactured. The negative values in the table
show tension while positive values show compression. Firstly, note that only
one of the points is tensed, i. e. number 1. Further, the strain on the tensed
and the compressed side is not uniform. The compression strain is higher than
the tension ditto. This may be the result of the different behaviour in tension
and compression in wood where the two Young s modulii differ a lot. This also
means that the unstressed layer, also called the neutral layer, is not located in
the middle of the beam. If that layer had been exactly in the middle, the values
for device number 1 would have been identical to the values for number 2, but
with opposite sign.

The values in Table 1 shows the strain in ym/m or micro strain. The first
two strain gauges are located 0.35 m from the force P. The moment for a test
load of 50 N is therefore 17.5 Nm. The back rail is 0.02 times 0.03 m which
results in a cross sectional area of 0.0006 m? and a moment of inertia, I, of
4.5 x 1078 m*. The axial force is zero and therefore the stress, o, could be
calculated as:

M x z 17.5 x 0.015
o= T = 15 %105 =5.83 MPa

This stress must be divided by the value for the Young s modulus for birch,



18,200 MPa, as found above. The strain will therefore become 0.000320 or
320 ym/m. The real strain, i.e. the one found in the experiment, is therefore
somewhat larger than expected but its at least in the right magnitude. When
100 N is applied the strain must become 640 ym/m and for 150 N it must be
960 um/m a value that corresponds at least to a certain amount with the one
monitored for the tensed side.

Suppose we had chosen the lower value of the Young ‘s modulii in Figure 2,
i. e. 6,450 MPa, the first two values in Table 1 should be compared with 1,033
pum/m which is not as close as before. Interesting to note is also that the increase
in strain on the tensed side becomes smaller for larger loads but the opposite
is valid on the compressed side. This should not happen according to Hooke “s
law.

In Table 1 the strain at the upper and lower part of the stretcher are shown.
The moment in each end of the stretcher is 0.0794 P x L which for P= 50 N and
L = 0.4 m will become 1.588 Nm. The left end is tensed on the upper side while
the right side is tensed on the lower side. Exactly in the middle of the stretcher
the moment therefore becomes zero, because the two moments are identical in
size. The only forces acting here will hence, be axial forces and shear forces.
When 50 N is applied the shear force could be calculated to 5.6 N and the axial
force to 147 N. The stress here can be calculated as 147 N / 0.0006 m? = 0.245
MPa. Young’s modulus in compression, see Figure 3, was calculated to 4,700
MPa and therefore the strain is calculated to 52 pm/m, which is more than
found in Table 1 but also of the right magnitude. More difficult to explain is
the fact that the stretcher seems to be bent even if the theory says that this is
not the fact. The values on the upper and lower sides of the stretcher seems,
however, to get closer when the load is increased.

If the stretcher in fact is bent the moments of each side could not be equal
in size. In order to study this, a second experiment has been elaborated see
Figure 7 and Table 2.

Force [N]  Strain [um/m] for device nr
1 2 3 4 )

25 -155 -12 -11 -8 441
50 -295 -26 -23 -11 +79
75 -405 -36 -34 -15 +104
100 -514  -45 -44 -12 143
125 -641 -52 -51 -6 +165

Table 2: Monitored strain in pm/m for different loads P in N

The devices 1 and 2 are located under the seat rail as close to the respective
corner as possible. Devices 3 and 5 are placed on the upper side of the stretcher
while device number 4 is pasted as low as possible, at the inside of the back rail.
From Table 2 it is shown that the strain is largest for device nr 1. This is logical
because the moment is about six times higher here than at the other measuring
points. The calculations showed that the moment is twice as large above the
seat rail as it is under it. The strain should also reflect this. If experiment
one and two are compared the strain above the rail was -456 and -808 ym/m
for 50 respective 100 N and -295 and -514 pym/m for the device under the rail.
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Figure 7: Location and number of strain gauge devices, experiment number two

There is therefore some discrepancy between the calculations and the monitored
values. The real strain as monitored is also still higher than expected from the
calculations above. For example, at a 100 N half the value of 640 ym/m would
have been perfect while 514 um/m instead was the fact.

Interesting to note is also the fact that the force - strain function follows
an almost perfectly straight line, see Figure 8, which was predicted by the
calculations.
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Figure 8: Force versus strain from device nr 1 in experiment 2.

This is not the fact for strain gauge nr 4 but, unfortunately, we do not know
the reason for this. The strain values in point 2 and 4 differ a lot. The strain
is about twice as large in point 2 compared to the one found in point 4. So do
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the values differ for point 3 and 5. This could , however, be the result of the
axial forces discussed above. For 50 N this axial force was calculated to 147
N resulting in a strain of 52 um/m. These 50 N also resulted in a moment of
1,6 Nm in each corner. The strain corresponding to that value is 136 ym/m.
The tensed side should therefore have a strain of 136 - 52 = 84 ym/m while the
compressed side should be 136 + 52 = 188 ym/m. Instead the values are - 23 and
+79 respectively. However, it seems that the calculated moment in the corner
is too large. The difference between the two monitored values is 102 pum/m
which is almost identical to the 104, i.e. 52 + 52, which was calculated. The
strain from bending only, should therefore be about 28 pum/m or subsequently
a moment of only 0.3 Nm.

The values for point 2 and 4 also show that they both are tensed. The
calculations, however, showed that point 2 should have been tensed while point 4
would be compressed. Further, the back rail is exposed to an axial compression
force which would have made the compression strain even higher. The reason
for these discrepancies might be imperfect properties at the wood material or
problems with the monitoring. Consider Figure 9.
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Figure 9: Exaggerated view of part of the chair frame

With the small rotations in our example, note that Figure 9 is greatly ex-
aggerated, the tensed part of the back rail might be very short. From practical
reasons it is not possible to monitor the strain at one specific point because
the strain gauge is about two cm long. Further, it is not possible to place it
absolutely in the corner where the tension must have its largest value.

CONCLUSIONS

In this paper it is shown that calculated values, by use of a finite element
method, many times have a fairly good correspondence with monitored values.
However, problems also occur. Wood has different properties for tension and
compression. This is shown by monitoring the strain at certain points of the
chair frame. For some points the calculations implied that tension would prevail
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but instead the experiments showed that this was not the fact. One explanation
for this might be difficulties to monitor the strain at a very small point located
in the corner of the frame. These values were also very small in magnitude
and therefore a minute modification of the properties of the wooden material
might have changed these monitored values. It also seems that more research
is needed in order to understand how to modify the theory of strain and stress
calculations especially for bent parts of a frame. This because the neutral layer
moves when bending is intensified.
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