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Abstra
t

Chairs and other furniture is seldom designed by help of stru
tural

me
hani
s and modern 
omputers. Even if the designer uses a sophisti-


ated CAD program, he, or she, will not use for example, �nite element

programs, FEM, in order to optimise the 
onstru
tion. Most furniture

is made of wood or wood 
omposites. Usually, stru
tural me
hani
s is

used for designing wood members in roof 
onstru
tions and so forth. Be-


ause of the 
onsequen
es of a breakdown, the allowable design stresses

must be very low, about one third of the measured breaking strength.

Smaller wood details 
ould be 
hosen with more 
are and for 
hairs the

result of a break would not ne
essarily lead to a disaster. However, a lot

of the knowledge about how to design small wood stru
tures emanates

from the pre-war aeroplane industry. The di�eren
e between tensile and


ompression strength properties in wood also makes ordinary FEM pro-

grams hazardous to use be
ause the ba
kground theory assumes that these

properties are equal in magnitude. In this paper we show how to 
al
ulate

the internal stresses of an undetermined 
hair frame and also shows some

material test results for Swedish alder, Alnus glutinosa.

INTRODUCTION

Strength design of furniture seems to interest only a few resear
hers in the world

at least if one looks at the number of papers published during re
ent years. The

authors to Referen
e [1℄ have examined the strength of furniture joints between

stru
tural members of laminated veneer lumber. This is a very important �eld

to investigate be
ause the joints seems to be the weakest point in various types

of furniture. In Referen
e [2℄, whi
h seems to be one of the �rst attempts to

interest a wider population of resear
hers for furniture and strength design, the

author has 
al
ulated the moments at the joints in an indeterminate frame of a


hair. However, he did not show at all how he ful�lled the 
al
ulations. Corner

joints in 
abinets have interested the authors to Referen
e [3℄ and they have used

FEM 
al
ulations to 
al
ulate the sti�ness for su
h joints between members of

parti
le board. Papers about 
abinets and other furniture have also been written

in Poland, see Referen
e [4℄. The, for us, most interesting paper about FEM


al
ulations and 
hairs, however, seems only to be available in Polish. They

have also written several other papers, in German, about joints and adhesives.

In Referen
e [5℄ we have shown how to 
al
ulate the internal stresses in an

indeterminate 
hair frame by use of the so 
alled displa
ement method. Further,

experiments with this method by use of a 
omputer are presented and the result
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showed that the stret
her was to be pla
ed diagonally between the lowest part

of the ba
k rail to the highest part of the front member, see Figure 1.

Figure 1: Chair with a diagonally pla
ed stret
her for minimising the moment

where the ba
k rail meets the seat, see Referen
e [5℄

The 
al
ulations for the frame in Figure 1 were made by a 
omputer program,

P-FRAME from Chalmers University of Te
hnology, and they showed that the

moments in the upper and lower part of the diagonally stret
her were very small,

only about 20 Nm. However, they also showed that axial for
es were introdu
ed

whi
h were only of minor interest in Referen
e [5℄ but must be 
onsidered if

the stret
her were made thinner. The axial for
es would eventually make the

stret
her 
ollapse due to one of the Euler 
ases. This paper is therefore dedi
ated

to su
h an investigation.

CASE STUDY

Consider the 
hair in Figure 1. For a start, assume that all the wooden members

have the same 
ross se
tional areas and are made of the same material, i. e.

they have the same Young's Modulii, E, and moment of inertia, I. In order to


al
ulate the stresses in the members we use the displa
ement method whi
h


an be studied in detail in Referen
e [6℄. First we must elaborate the sti�ness

matrix. Here, we will only show the method for the �rst line in this matrix but

the other lines are a

omplished in the same way. In Figure 2, to the left, we

have simpli�ed the frame as mu
h as possible while we in the right part have

introdu
ed a rotation in the upper left 
orner of the frame.

Be
ause of the diagonal stret
her the frame 
ould not have a transverse
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Figure 2: Simpli�ed frame, to the left, and rotated 
orner for sti�ness matrix

elaboration, to the right

displa
ement, i. e. in �rst order theory. The joints 
ould only rotate. Referen
e

[6℄ now tells us that the sti�ness matrix elements, made up of elementary 
ases,

equal:

e−
11

=
4EI

L
+

4EI

L× 20.5
=

6.83EI

L

e−
21

=
2EI

L

e−
31

=
2EI

L× 20.5
=

1.41EI

L

The total sti�ness matrix and the equation system to be solved is therefore:





6.83 2 1.41
2 8 2

1.41 2 6.83



×
EI

L
×





q1
q2
q3



 =





0
P × L

0





Solving this results in

q1 = −0.0345PL
2

EI

q2 = +0.1423PL
2

EI
and

q3 = −0.0345PL
2

EI

The elements of the frame must after this be separated in beams. The


onvention for positive signs of moments and rotations is shown in Figure 3.

The moments must therefore be 
al
ulated as, note that we have negle
ted

translations, t, be
ause of �rst order theory:
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Figure 3: Positive signs for moments, translations and rotations, see Referen
e

[5℄

M12 = 4× 0.0345 ×
PL

2

EI
×

EI

L
− 2× 0.1423 ×

PL
2

EI
×

EI

L
= −0.1466PL

M21 = 2× 0.0345 ×
PL

2

EI
×

EI

L
− 4× 0.1423 ×

PL
2

EI
×

EI

L
= −0.5002PL

M23 = 4× 0.1423 ×
PL

2

EI
×

EI

L
− 2× 0.0345 ×

PL
2

EI
×

EI

L
= +0.5002PL

M32 = 2× 0.1423 ×
PL

2

EI
×

EI

L
− 4× 0.0345 ×

PL
2

EI
×

EI

L
= +0.1466PL

M31 = −4× 0.0345 × 2−0.5
×

PL
2

EI
×

EI

L
− 2× 0.0345 × 2−0.5

×
PL

2

EI
×

EI

L
= −0.1466PL

M13 = −2× 0.0345 × 2−0.5
×

PL
2

EI
×

EI

L
− 4× 0.0345 × 2−0.5

×
PL

2

EI
×

EI

L
= −0.1466PL

Assuming that P equals 300 N and L equals 0.4 m, as in Referen
e [5℄,

implies that:

M12 = 17.59 Nm (tension below)

M21 = 60.0 Nm (tension above)

M23 = 60.0 Nm (tension inside)

M32 = 17.59 Nm (tension outside)

M31 = 17.59 Nm (tension outside)

M13 = 17.59 Nm (tension inside)

It is obvious that the stret
her 
ould be mu
h thinner than the seat and ba
k

rails be
ause the moments in the stret
her is only one third of the moments

at the other frame joints. As mentioned above, we have also introdu
ed axial

for
es in the frame and this 
ould lead to stability problems. Up to now we have

negle
ted these for
es but this does not mean they are zero. Using equations

of stati
 equilibrium for ea
h separated beam, see Figure 3, and joint, makes it

possible to 
al
ulate the shear for
es T and hen
e the axial for
es, N . The axial

for
e in the stret
her is by use of these fa
ts 
al
ulated to 449 N, 
ompressed,

the for
e in the horizontal beam is 230 N, tensed, while the verti
al beam is


ompressed by a for
e of 194 N. The question is now if the stret
her is in the

vi
inity to 
ollapse be
ause of the moments and the axial for
e. To start with

we 
ould 
ompare the axial for
es to the 
riti
al ones from an Euler IV 
ase

whi
h are 
al
ulated as:
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Pcrit = 4× π2
×

EI

L2

We see that it is ne
essary to �nd values for E and I if we are to 
al
ulate

the 
riti
al for
e. I is possible to 
al
ulate but E depends on the material. In

e.g. Referen
e [7℄, page 164, values for E 
ould be found. The author shows

the value for the modulus of elasti
ity, MOE, whi
h is 
al
ulated from bending

tests. Tensile or 
ompression moduluii 
annot be found. Therefore, we have

made some small tests on alder ourselves. In Figure 4 a tensile test is shown.

Figure 4: Tensile test for Swedish alder, Alnus glutinosa

From Figure 4 it is shown that the relationship between stress and strain

follows an almost perfe
t straight line. The stress obtained at break was 91.1

MPa and the strain was 0.86 %. The E modulus is therefore 
al
ulated to

10,593 MPa. The breaking strength for European alder is 92 MPa a

ording to

Referen
e [7℄ whi
h 
orresponds almost perfe
tly with the value in Figure 4. In

Referen
e [8℄ the same type of diagram is published for Swedish bir
h, Betula.

Bir
h wood is mu
h stronger than alder, the stress obtained before breakage was

higher than 160 MPa. Alder also seems to have another behaviour when tensed

than bir
h be
ause we 
ould not observe that some �bres broke and other took

over the load as was found for bir
h. Instead the alder wood in Figure 4 seemed

to endure the load to a spe
i�
 point and after this a total 
ollapse o

urred.

Some other tests did not show this as 
lear as above but the main di�eren
e

in behaviour between alder and bir
h seems to be valid. We have also made


ompression tests, see Figure 5.

The breaking strength for alder under 
ompression parallel to the grain was

about 58 MPa, see Figure 5, or about half the value found for tension. The

value 
orresponds well to the one found in Referen
e [7℄ whi
h is 54 MPa. The

E-modulus 
al
ulated from the middle part of the 
urve in Figure 5 be
omes

approximately 2,900 MPa or about one third of the one found for tension. In-

serting L = 20.5× 0.4 = 0.56 m, E = 2,900 MPa, I = 0.01× 0.03
3

12
= 2.25× 10−8
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Figure 5: Compression test for Swedish alder, Alnus glutinosa

m

4
yields that Pcrit equals 8,050 N whi
h is far from the axial load 
al
ulated

above. There is therefore no danger for a 
ollapse in the same plane as the

frame. The rod is weaker in the dire
tion perpendi
ular to the frame whi
h

implies that an I = 0.03× 0.01
3

12
= 2.5× 10−9

should be used instead. Pcrit will

then de
rease to 894 N. The a
tual axial load is still about two times lower and

therefore no risk seems to be apparent. Therefore, let us make the stret
her

mu
h thinner, for example 0.005 times 0.02 m. We must start the 
al
ulations

all over again and elaborate a new sti�ness matrix. The inertia moment, I, will

now be
ome 3.33 × 10

−9
m

4
in the plane of the frame, whi
h is about 6.75 times

lower than before. The �rst three elements of the sti�ness matrix will therefore


hange to:

e−
11

=
4EI

L
+

4EI

6.75× 20.5 × L
=

4.419EI

L
,

e−
21

=
2EI

L
,

e−
31

=
2EI

6.75× 20.5 × L
=

0.210EI

L

It is not possible to show the total 
al
ulation pro
ess but the resulting

rotations are q1 = q3 = 0.0689PL
2

EI
, q2 = 0.1594PL

2

EI
. Note that the �rst and last

rotation is about twi
e as large as before, while q2 did not 
hange very mu
h.

The moments be
omes:

M12 = 5.19Nm (tension below)

M21 = 60.0Nm (tension above)
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M23 = 60.0Nm (tension inside)

M32 = 5.19Nm (tension outside)

M31 = 5.19Nm (tension outside)

M13 = 5.19Nm (tension inside)

Using equations for stati
 equilibrium for ea
h joint shows that the axial

for
e in the stret
her will not 
hange at all, the for
e is still 449 N. The 
riti
al

Euler IV for
e will now be
ome 1,200 N whi
h is about three times higher than

the a
tual load. Stability problems, however, arise when bending perpendi
ular

to the frame plane is 
onsidered. The 
riti
al for
e will now be
ome only 75 N,

whi
h is lower than 
al
ulated above. Therefore, the stret
her will probably


ollapse due to the axial for
e and it will bend perpendi
ular to the plane of the

frame.

Using the Euler IV 
ase as shown above is not quite a

urate a

ording to

the theory of stru
tural me
hani
s. The stret
her is in�uen
ed by the moment

in ea
h end. This implies that the sti�ness matrix must be elaborated by use

of so 
alled Berry fun
tions, see Referen
e [6℄ page 267. These fun
tions 
hange

the sti�ness elements a

ording to a 
al
ulated value α = P

PEUII

, i. e. the a
tual

load divided by the Euler II 
riti
al load, whi
h in our 
ase equals,:

α = 449×
(0.4× 20.5)2

π2 × 2, 900× 106 × 1.33× 10−8
= 0.38

The sti�ness

4EI

L
must now be 
hanged to

3.473EI

L
while the value

2EI

L
be
omes

2.141EI

L
for the beam under 
onsideration. The total sti�ness matrix will there-

fore 
hange to:





6.45 2 1.52
2 8 2

1.52 2 6.45



×
EI

L

A stability problem now o

urs only if the determinant of the matrix is

negative or equals zero. In our 
ase this is not the fa
t be
ause this value is


al
ulated to 275 whi
h is well on the safe side. When the thinner stret
her is

introdu
ed the sti�ness matrix will 
hange to:





5.43 2 2.04
2 8 2

2.04 2 5.43



×
EI

L

whi
h has a determinant of 175, whi
h is lower than before but also on the

safe side. Using Berry fun
tions therefore 
on�rms that no stability problem

o

urs for the stret
her under 
onsideration, at least as long as only bending

into the plane is dealt with. Even if the risk for 
ollapse perpendi
ular to the

frame is evident, be
ause of the axial for
es, it is interesting to study the stress

at di�erent points of the frame. The maximum moment o

urs at the ba
k rail

above the seat, i. e. 120 Nm. By use of 
lassi
 theory the stress 
ould be

approximated with:

σ = ±
M × z

I
or in our 
ase ±

120× 0.015

2.25× 10−8
equalling 80 MPa.
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The stret
her is exposed to an axial for
e of 449 N, whi
h results in a stress

of 4.5 MPa and a moment of 5.19 Nm resulting in 15.6 MPa or a total stress

of about 20 MPa if the thin stret
her is 
hosen. In Referen
e [7℄ page 164 the

modulus of rupture in bending for European alder is set to 83 MPa, i. e. slightly

stronger than the 
al
ulated stress. The 
ompression E-modulus is lower than

the 
al
ulated stress. It therefore seems ne
essary to redu
e the moment in the

ba
k rail and at the same time 
hange the 
ross se
tional area of the stret
her

if the wooden material should be utilised to maximum values. If a stret
her is

introdu
ed from the top of the ba
k rail to the front of the seat the dangerous

moment should be redu
ed, see Figure 6.

Figure 6: Chair with two stret
hers for minimising the moment in the ba
k rail.

The 
hair in Figure 6 is probably not very pra
ti
al but is used here for

a
ademi
 reasons. In real life the top stret
her 
ould be made of 
ord instead

of massive wood be
ause it will be exposed almost only for tension axial for
es.

Another way is to build a new frame above the seat whi
h 
ould be used as

a pla
e to rest your arms. Unfortunately, the stru
ture in Figure 6 
annot be

analysed without 
onsidering the axial deformation of the stret
her between

point 1 and 4. The stret
her is however a very thin element and therefore it


annot endure large moments. It is therefore satisfa
tory to assume that the

moment in point 4 equals zero and hen
e it is possible to 
al
ulate the axial

for
e in the stret
her to 424 N whi
h in turn implies a prolongation of less than

0.001 m. Further, assuming that the top of the ba
k rail de�e
ts this amount

results in a moment in the ba
k rail at point 2 of only about 1 Nm. Computer


al
ulations show that the moment is even 
loser to zero. In real life, the burden

a 
hair must endure does not 
orrespond with the loads assumed in this paper.

Real truss 
hairs therefore do not seem to be re
ommendable but if the stru
ture

8




ould get 
loser to a truss, mu
h smaller members 
ould be 
hosen.

CONCLUSIONS

If the stru
ture of a 
hair 
ould be 
hanged to a truss or a bar stru
ture only axial

for
es are of interest. Some of the bars will be
ome 
ompressed and therefore

stability problems will o

ur when the wooden material shall be utilised to the

brink of 
ollapse. Some of the stru
tural members will only be tensed whi
h

means that very thin dimensions 
ould be used be
ause of the high strength

of tensed wood parallel to the �bres. When the 
ross se
tional areas of the

wooden members get smaller more interest must be paid to the di�erent loads

a
tually implemented on the stru
ture. One example is to study how the load

is distributed on the ba
k and seat of the 
hair. The beam under the seat must

of 
ourse 
arry a distributed load whi
h will imply rotations in the ends of the

member. Be
ause of �rm joining between the parts in the 
hair moments will

be introdu
ed in other parts of the stru
ture as well. Hen
e, the truss model


annot be used without great 
are when real 
hairs are to be designed.
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