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Abstract

The design of structural members of furniture is almost never the
subject for mathematical considerations. Instead, the designer rests on
empirical experience and constructs for example chairs with dimensions of
structural members based on tradition and aesthetic reasons. By the much
more common use of computers it is nowadays possible to use modern
finite element programs in various stages of the design process. In this
paper we show how already simple calculations lead to a totally different
design of a chair. We also emphasise the need for more research on wood
in “furniture size” and not only as part of building structures. There is
no need for "triple- security” values when a chair is to be designed but
instead it is possible to balance on the edge of the mechanical strength
in the wooden members. Further, it is possible to use only wood details
where no knots, or other errors are present. This will lead to substantially
thinner members in the wooden chair.

Abstract

Mobel-Design mit Hilfe der FEM

Das Design von Mobelelementen ist nur selten Gegenstand mathema-
tischer Uberlegungen. Stattdessen stiitzen sich die Designer auf Ehr-
fahrungswerte und die Konstruktion von Einzelstiicken aufgrund tradi-
tioneller oder dsthetischer Betrachtungen. Mit Hilfe von Computern ist
es jedoch leicht moglich moderne FEM-Programme fiir die verschiedenen
Entwicklungsschritte eines Designs zu nutzen. Wir betonen hier auch die
Notwendigkeit weiterer Grundlagenforschung fiir Abmessungen im Mo6-
belbereich nicht nur bei Baukonstruktionen. Fiir die Stuhlkonstruktion
ist auch keine Dreifach-Sicherheit nétig, sondern man kann die mecha-
nische Festigkeit der Konstruktionselemente voll ausnutzen. Zudem ist
es moglich, durch Vorsortieren typische Holzfehler ganz unberiicksicht zu
lassen. Das wiederum ermdglicht schlankere Einzelteile fiir das Stuhlde-
sign.

1 Introduction

In Sweden we have no tradition in using solid mechanics for furniture design.
Instead, the design has been founded on empirical knowledge of how chairs and
other furniture usually looks. Further, the scientific society has not published
very much in this field so it seems that there is a vast field for new types of



furniture based on modern methods in solid mechanics. However, some authors
have shown some interest in this field. As far as we have found out it seems
that the author C. A. Eckelman was the first one to consider strength design
of furniture, (Eckelman 1978), see Reference [1]. From the authors reference
list it is obvious that his work had started about 1966 with a paper in Forest
Products Journal. In 1968 he followed with a dissertation, which unfortunately,
is not published. The author considered the fact that the wooden members
in the frame were not to have higher stresses than were allowable but he used
values that are one third of the actual breaking strength. Certain parts of the
frame were therefore thicker than they had to be. He says that the wooden
members were “stressed at reasonably efficient levels” but also mentioned that
the designer for aesthetic reasons wanted to use larger parts in the chair. He
also deals in detail with determinate frames while calculations on indeterminate
frames only got a few pages in mentioned reference. There is, of course, a reason
for this because determinate frames are much easier to analyze.

We have also found an institution in Poland who have published papers about
solid mechanics and furniture, see e.g. (Smardzewski, Dziegielewski 1993), i.e.
Reference [2]. They present a likewise impressive publication list but unfortu-
nately it seems that the most interesting paper about chairs and frames is only
available in Polish.

At the Northeast Forestry University in Harbin, China, research about corner
joints for case furniture is going on, (Cai, Wang 1993), see Reference[3]. In
the referred paper they have studied the stiffness for joints on cabinets made
of particle board. They also made their analysis by use of the finite element
method.

2 Case study

Consider the chair in Figure 1.
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Figure 1: Drawing of a chair as a determinate frame. Fy, F5, F3 and Fy are dif-
ferent forces acting on the chair. Schema eines Stuhls als Berechnungsgrundlage
mit festen Grofsen. Fy bis Fy sind Kriéfte, die auf den Stuhle einwirken.



The first thing to find out is the loads that are acting on the chair. In our
example we use 300 N acting horizontally at the top of the back rail while we
assume that 600 N act at the front of the chair in a vertical direction, values we
have found in (Eckelman 1991), see Reference [4]. The following three equations
might be drawn:

Fy+F5—600 N =0 (1)
Fy—F;+ 300N =0 (2)
600 N x 0.05 m + 300 N x 0.8 — F3 x 0.5m = 0 (3)

The Equation, (1), considers the vertical forces, Eq. (2) the horizontal forces
and the third one the moment, or bending force, around the bottom part of the
left chair leg. We start with analysing a determinate frame assumed that we
have no force F}. The force F; must subsequently be 300 N. From the third
equation F3 must equal 540 N and finally F5 will become 60 N. The moment, or
bending force, at the middle of the back rail, but above the seat, is 120 Nm while
the shear force must be 298 N, note that the force is not exactly perpendicular
to the back rail. Immediately under the seat the moment must be:

300 N x 0.4 m — 540 N x 0.05 m = 93 Nm (4)

while the shear force equals 230 N. The floor reaction will also introduce an
axial stress of 573 N. This in turn leads to a momentum of 213 Nm in the chair
seat rail where the rail is concave on the upper side of the seat. At the same
time a shear force of 540 N acts on the seat rail. Now it is time to calculate the
internal stress in the frame. For a start, assume that the seat rail, where the
maximum forces occur, has a thickness, w, of 0.02 m and a depth, d, of 0.05 m.
Basic knowledge of solid mechanics shows that the stress o is calculated as:

N M x x d3
:Z+ 7 : where I:w12 (5)
and N is the axial force, A the cross sectional area of the rail and z the
distance from the centre of gravity which is assumed to be located in the middle

of the rail. In the seat rail the axial force is negligible so ¢ will become:

g

0.025 m 6

The question is now if this stress is permissible or not. Assume we choose
red beech wood, Fagus silvatica. In (Tsuomis 1991), page 164, see Reference
[5] it is shown that the tensile strength of beech is about 130 MPa and we are
subsequently far from the limit here. On the other side of the rail, under the
seat, the rail is subject to compression. A new look in the reference reveals that
the compressive limit stress is only 46 MPa, which is also lower than the stress
in the chair. In our own testing equipment we have found that values up to 72
MPa might be applicable before the cell structure is crushed. This is published
in (Antic 1994), see Reference [6] but unfortunately the report is only available
in Swedish. Due to the big difference between tensile and compressive breaking



strength it is also common to examine the modulus of rupture for bending which
in (Tsuomis 1991), Ref. [5], equals 104 MPa.

Further, it is necessary to consider the shear stress. From knowledge in
solid mechanics this stress, note that we assume a rectangular cross section, is
calculated as:

F

The force in our case was 540 N which implies that ( will equal 0.8 MPa.
In (Kollmann and Coté 1984, page 402), see Reference [7] the applicable shear
stress across the fibers is about 37 MPa while (Tsoumis 1991), Ref. [5], gives a
value of 12 MPa. The two values are quite different but both are more than ten
times larger than the actual stress.

From the above discussion it is shown that smaller rails could be chosen and
the fact is that a rail of about 0.02 times 0.03 m might be applicable before the
bending strength is reached. The other rails are subject to lower forces so in
our case those members could be even smaller in size.

3 Indeterminate frames

Almost all chairs contain a stretcher between the front and back leg of the chair,
see Figure 2.
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Figure 2: Indeterminate frame in a chair with a stretcher. Unbestimmts Berech-
nungsschema eines Stuhls mit Querversteifungen.

When the stretcher is introduced the calculation process gets severely harder
even if the frame in Figure 2 has been simplified. The internal forces cannot be
calculated only by use of the equations of static equilibrium. Instead we must
assume the cross sections first and then calculate the rotations and movements



in each joint. After this is done it is possible to calculate the internal forces.
This work is nowadays made by computers but we will first show the method
as it is used for hand calculations. However, it is only possible to show a small
part of the calculation process here and hence the interested reader must find
all details in e.g. (Asplund 1966), i.e. Reference [8]. The method we use
is called the displacement method, see page 210 in the reference, where the
stiffness matrix is elaborated by use of so called elementary cases. We use the
matrix method here because of easier presentation. First consider the frame in
Figure 2. The back rail has been eliminated and instead a moment and a force
has replaced the rail. The first element in the stiffness matrix is elaborated by
applying a rotation in one of the joints, e.g. joint number 1, while all the other
joints are kept fixed. The forces required to obtain such a deformation will be
equal to one column of the stiffness matrix. We apply the rotation clock wise
but this is only for convenience, see Figure 3.
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Figure 3: How to elaborate the first elements in the stiffness matrix, e,; represent

the element numbers. Bestimmung der Anfanges-Elemente e;;
einzelnen Punkten.
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The right hand side of Figure 3 shows the elementary case where:

K= o= or= % (8)

Element number ej; will therefore consist of three parts, one for each struc-
tural element of concern. Consider the rail between point 1 and 4. The modulus
of elasticity is E and the length is L, compare with the right part of Figure 3.
We see that e; has the same rotation as K, turn the elementary case upside
down. Our first part of the element is therefore %. The second part, from
point 1 to the floor, must be equal to null because of the wheels, while the third
part, between point 1 and 2 also will correspond to K; above. Note that the

length is now only % Adding these cases results in the first element:

_ 4F1 4F1 12E1
€1 = L + L = L (9)
2

The element e;; corresponds to C' in the elementary case, but with the



length £, which results in 2£Z. Element e3; must be null because the structural
elements at point 3 does not take part in the reaction against the rotation in
point 1. Element ej; corresponds to C' and will equal 22L. The “force” ey, is

found in C'T and will therefore become —% which equals —2‘}4’51 , note the
2

minus sign, and the same is valid for element number eg;, but with the opposite
direction. All the joints in the frame must after this be dealt with and sometimes
other elementary cases are applicable but they will not be shown here. However,
the equation system to be solved is shown by the following stiffness matrix:

12 4 0 2 -2
L qn 0

24
4 12 2 0 -% 2 0 0

SR R

0 2 12 4 -2 2 CEL | e || PxL (10)
2 0 4 18 -2 2 L a | 0
24 24 24 24 192 _ 192 P1 Py
L L L L L2 L2 0
24 24 24 24 192 216 b2
L L L L L2 L2

Here the unknown rotations is denoted ¢ while the linear deformations are
called p. The load Py correspond to P in Figure 2. The unknown deformations
can now be calculated and their values are:

@ = 0.065 LL

EI
g2 — 0.048 EL
gs — 0.144 L
g — 0.077 BL
pi = 0.127 ZL
p2 — 0.080 £L

After this it is necessary to implement the displacements in a new set of
equations which are elaborated from still another elementary case, see Figure 4.

The bending and shear forces in the beam between joint number 1 and 2
may now be calculated as, see (Asplund, 1966), i.e. Reference [§]:

El EI
M1:4Xm1XT+2Xm2XT+6XtXﬁ (11)
El EI El
M2=2Xm1XT+4><m2XT+6XtXF (12)
EI ) EI
T1:6><m1xﬁ+6xm2xEIL +12xtxﬁ (13)

If the displacements, external forces where P equals 300 N, and the length
L which equals 0.4 m, are implemented in the equations the following result is
achieved:
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Figure 4: General representation of a beam. M; 2 denotes bending forces and
T shear forces. Vereinfachts Schema einer Quersprosse. M; 2 = Biegemoment
und T = Scherkréfte.

My = - 0.414 PL = 49.7 Nm (t. below) M1 = - 0.438 PL = 52.6 Nm (t. above)
Mo = 0.416 PL = 49.9 Nm (t. outside) Mo = 0.484 PL = 58.1 Nm (t. inside)
Mas = - 0.480 PL = 57.6 Nm (t. below) Msz = - 0.672 PL = 80.6 Nm (t. above)
M3s = -0.332 PL = 39.8 Nm (t. inside) Muy3 = - 0.064 PL = 7.7 Nm (t. outside)
Mys = 0.498 PL = 59.8 Nm (t. outside) Ti4 = -0.85 P = 255 N

Ti2 =18 P =540 N To3 =-1.15 P =345 N
T34 =-0.792 P = 237 N

Note that the letter t” in the list above stands for tension.

The moment M, is the bending force in point number one in the direction of
point number four, while My; is the moment in point number 4 in the direction
to number one. Interesting is now to study what happened to the moment of
213 Nm which was present in the determinate frame. The moment in the same
point with a stretcher introduced is 80.6 Nm i.e. a reduction by over 50 %. It is
therefore possible to design the rails in the chair as very thin details. However, it
is also obvious that some parts of the chair are not stressed as much as others. It
would thus be very interesting to see what happens if some of the rails, and the
stretcher, are made of other dimensions than e.g. the back rail. The members
would also be stressed differently if the stretcher is moved up or down and it is
not, obvious that the lowest stress is present when the stretcher is horizontal.

4 Computer Calculations

In order to calculate this we have used the computer program "P - frame" which
is developed at the department of structural mechanics at Chalmers University
of Technology. Thank you Lars Bernspang who helped us with the calculations.
The result is shown in Table 1. Each column represent one case of the location
of the stretcher where the values correspond to the vertical measure for the two
joints. The zero point is in the low left corner in Figure 2. The first column
therefore shows the case calculated by hand above. In the second column the
stretcher is moved horizontally upwards 0.04 m.

Moving the stretcher upwards results in surprisingly small changes in the



Mom  .20,.20 .24,24  .16,.16  .20,.24 20,16 _ .24,20 .24,.16 .16,.20 .16,.24

My 48.7 49.7 47.6 52.7 44.2 44.2 38.7 51.0 53.7
My, 53.4 57.2 49.4 65.7 42.2 44.9 34.2 60.6 72.3
M2 48.7 49.7 47.6 52.7 44.2 44.2 38.7 51.0 53.7
Mo, 56.6 55.9 57.2 58.4 54.8 53.2 50.8 58.3 59.1
M3 56.6 55.9 57.2 58.4 54.8 53.2 50.8 58.3 59.1
M3 81.3 77.1 85.6 85.5 79.1 73.3 71.6 88.4 92.5
M3y 38.7 42.8 34.8 34.5 40.9 46.7 48.4 31.6 27.5
Mys 6.6 14.8 1.3 6.3 5.8 15.1 13.8 0.6 0.3
Mys 60.0 72.0 48.0 72.0 48.0 60.0 48.0 60.0 72.0

Table 1: Bending force, or moment, at the end of the beams in the chair

bending forces. For instance, the force is almost identical in point M1y, i.e. 49.7
compared to 48.7 Nm in the left side of the stretcher, see column one and two.
The right side moment in the same item is increased by 3 Nm while the force
in the horizontal part in the top right corner is decreased by 3 Nm. The major
differences occur in point 4 where My3 is doubled to 14.8 Nm and M5 increases
to 72 Nm.

A move downwards by 0.04 m, see column three, results in similar small
changes, e. g. M3 equals 57 Nm or is increased by only one Nm. The moment
in the horizontal beam at the top right corner is now 85.9 Nm or an increase by
5 Nm compared with the first case. At the same time the vertical beam in the
same corner will loose about 5 Nm. M, will decrease to 48 Nm.

In order to make the moments more equal it therefore seems as if we must
raise the stretcher in its right part. This, because the bending force in the
top right horizontal part decreased when the stretcher was moved upwards.
However, further investigations showed that if the stretcher is lowered by 0.04
m in the right side and raised by the same amount in the left side, column
number seven, the moment in the right corner of the top horizontal beam will
equal only 71.6 Nm. If the opposite strategy is chosen, i. e. lowering the left side
while at the same time raising the right side, the critical moment is increased
to 92 Nm, see column number nine. This result encourages us to move the
stretcher to the lowest point in the right side of the frame and at the same time
at the top left joint. The moment in the top left corner will now become 17.9
Nm where the horizontal beam is drawn underneath. The same moment occurs
in the top left corner of the diagonal element which is tensed on the upper side.
In point three the horizontal beam has a moment of 61.5 Nm while the vertical
beam has a moment of 58.5 Nm. In the bottom right corner 16.6 Nm occurs.
The frame in the chair should from the point of solid mechanics be designed as
shown in Figure 5.

5 Discussion and Conclusions

From Figure 5 it is clear that ordinary design of chairs does not take solid me-
chanics into account as to minimise the stresses in the wooden frame. However,
much more knowledge is needed in this field of research. Perhaps it would be
better to change the cross sectional area for the details instead of changing their
location. If, for instance, the diagonal part in the frame is designed only for
taking up the bending force a very thin stretcher could be used. This in turn
emphasises the need for taking stability problems into account. The maximum
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Figure 5: Frame which makes the critical moment in the right side of the hori-
zontal beam as small as possible. Stuhlschema zur Minimierung des kritischen
Moments der Quersprossen.

axial force is 628 N which occurs at the same time as the joints are bent. An-
other problem which is not dealt with here is the fact that the limit strength
for wood differs very much between tension and compression. In (Antic, 1994),
i.e. Reference [6] it is shown that a total compression load of 2700 N could be
implemented in a rod of 0.035 times 0.01 m without stability problems. The
rod was made of beech and had a free length of 0.72 m. The case tested was a
so called Euler IV where the ends of the rod were tightly fixed. There was no
bending force applied at all but the example shows that much weaker construc-
tions could be designed if the wooden material should be utilised to maximum
stress.
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